89Zr-Bevacizumab PET: Potential Early Indicator of Everolimus Efficacy in Patients with Metastatic Renal Cell Carcinoma
- PMID: 28082434
- DOI: 10.2967/jnumed.116.183475
89Zr-Bevacizumab PET: Potential Early Indicator of Everolimus Efficacy in Patients with Metastatic Renal Cell Carcinoma
Abstract
Currently, biomarkers that predict the efficacy of everolimus in metastatic renal cell carcinoma (mRCC) patients are lacking. Everolimus inhibits vascular endothelial growth factor A (VEGF-A) expression. We performed PET scans on mRCC patients with 89Zr-bevacizumab, a VEGF-A-binding antibody tracer. The aims were to determine a change in tumor tracer uptake after the start of everolimus and to explore whether 89Zr-bevacizumab PET can identify patients with early disease progression. Methods:89Zr-bevacizumab PET was done before and 2 and 6 wk after the start of everolimus, 10 mg/d, in mRCC patients. Routine CT scans were performed at baseline and every 3 mo thereafter. Tumor tracer uptake was quantified using SUVmax The endpoints were a change in tumor tracer uptake and treatment response on CT after 3 mo. Results: Thirteen patients participated. The median SUVmax of 94 tumor lesions was 7.3 (range, 1.6-59.5). Between patients, median tumor SUVmax varied up to 8-fold. After 2 wk, median SUVmax was 6.3 (1.7-62.3), corresponding to a mean decrease of 9.1% (P < 0.0001). Three patients discontinued everolimus early. At 6 wk, a mean decrease in SUVmax of 23.4% compared with baseline was found in 70 evaluable lesions of 10 patients, with a median SUVmax of 5.4 (1.1-49.4, P < 0.0001). All 10 patients who continued treatment had stable disease at 3 mo. Conclusion: Everolimus decreases 89Zr-bevacizumab tumor uptake. Further studies are warranted to evaluate the predictive value of 89Zr-bevacizumab PET for everolimus antitumor efficacy.
Trial registration: ClinicalTrials.gov NCT01028638.
Keywords: biomarker; everolimus; molecular imaging; positron emission tomography; renal cell carcinoma.
© 2017 by the Society of Nuclear Medicine and Molecular Imaging.
Publication types
MeSH terms
Substances
Associated data
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical