Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jan 13;12(1):e0170022.
doi: 10.1371/journal.pone.0170022. eCollection 2017.

Wind Energy Conversion by Plant-Inspired Designs

Affiliations

Wind Energy Conversion by Plant-Inspired Designs

Michael A McCloskey et al. PLoS One. .

Abstract

In 2008 the U.S. Department of Energy set a target of 20% wind energy by 2030. To date, induction-based turbines form the mainstay of this effort, but turbines are noisy, perceived as unattractive, a potential hazard to bats and birds, and their height hampers deployment in residential settings. Several groups have proposed that artificial plants containing piezoelectric elements may harvest wind energy sufficient to contribute to a carbon-neutral energy economy. Here we measured energy conversion by cottonwood-inspired piezoelectric leaves, and by a "vertical flapping stalk"-the most efficient piezo-leaf previously reported. We emulated cottonwood for its unusually ordered, periodic flutter, properties conducive to piezo excitation. Integrated over 0°-90° (azimuthal) of incident airflow, cottonwood mimics outperformed the vertical flapping stalk, but they produced << daW per conceptualized tree. In contrast, a modest-sized cottonwood tree may dissipate ~ 80 W via leaf motion alone. A major limitation of piezo-transduction is charge generation, which scales with capacitance (area). We thus tested a rudimentary, cattail-inspired leaf with stacked elements wired in parallel. Power increased systematically with capacitance as expected, but extrapolation to acre-sized assemblages predicts << daW. Although our results suggest that present piezoelectric materials will not harvest mid-range power from botanic mimics of convenient size, recent developments in electrostriction and triboelectric systems may offer more fertile ground to further explore this concept.

PubMed Disclaimer

Conflict of interest statement

McCloskey was employed during the course of this study by Creodyne LLC through an NSF SBIR award specifically for the present study. No patents, products, consultant arrangements or other marketed products emerged from this study, and the authors have no competing interests. This affiliation with Creodyne in no way alters our adherence to PLOS ONE policies on sharing of data and materials.

Figures

Fig 1
Fig 1
Properties of model cottonwood leaf in fan-generated wind: (A) Power dissipated across 10 MΩ load (circles), and frequency of major band (triangles) as function of wind speed; (B) Raw voltage data at two wind speeds; (C) Power spectra at four wind speeds, showing shift of major band to higher frequencies with increase in wind speed. Leaf was angled 60 degrees downward from horizontal.
Fig 2
Fig 2. Effect of excitation frequency and load resistance on power output from PVDF strip exposed to repetitive pulses of N2 gas at 34 PSI.
Optimal RL corresponds to capacitive reactance of piezo. Sweet spot appears to exist at ~ 4 Hz, perhaps due to mechanical resonance.
Fig 3
Fig 3
Effect of load resistance on energy conversion by a triplex stack of PVDF elements excited by repetitive pulses of N2 gas at 4 Hz: (A) Primary data show progressive drop in voltage with RL. (B) Measured (circles) and theoretical (crosses) RMS voltage drops across load resistance; (C) Effect of RL on power (V2/RL), with optimal harvesting near 1 MΩ.
Fig 4
Fig 4. Power generation by a stack of 10 PVDF elements attached to base of 48 cm cattail-inspired model, flexed at 1.3 Hz by a gated air stream (11 knots).
Individual elements connected in parallel to increase C step-wise. Approximate ten-fold increase in power with ten-fold increase in C. For RL = 1 MΩ, Fc = 16.7, 2.3 and 1.7 Hz at 1, 7 and 10 elements connected in parallel.
Fig 5
Fig 5. Cottonwood-shaped plastic leaves mounted on aluminum trellis.
Output from each Kynar-based petiole was rectified before summation over leaf population.
Fig 6
Fig 6. Power output by faux cottonwood trellis as function of wind speed.
(A) Average wind speed estimated from mean of highest and lowest speed during the 25 s recording period. At ten knots, power was ~ ten-fold that of single cottonwood mimic indoors. (B) Power spectrum of single leaf during 500 s, in wind fluctuating from 7.5 to 9 knots. (C) Primary voltage data show variation due to fluctuating wind speed and direction.
Fig 7
Fig 7. Directional sensitivity of power output from vertical flapping stalk and cottonwood leaf models.
Power was maximal for both systems when PVDF petiole was oriented edge-on into wind (8.9 vs. 7.5 knots for flapper vs. cottonwood) and decayed with increase in azimuthal angle. Max power was greater but decayed more steeply for vertical flapping stalk. RL = 10 MΩ both systems.

References

    1. Hadhazy A. Power Plants: Artificial Trees That Harvest Sun and Wind to Generate Electricity. Scientific American. 2009.
    1. Van der Beek A. Nanoleaf. Google Patents; 2011.
    1. Oh SJ, Han H.J., Han S.B., Lee J.Y., and Chun W.G. Development of a tree-shaped wind power system using piezoelectric materials. International Journal of Energy Research. 2010;34:431–7.
    1. Zhang G, Chen, V., Xu, W., Galos, R., Zhou, L. and Shi, Y., Piezoelectric leaf generator for wind energy harvest. ASME Proceedings; 2014.
    1. Li S, Yuan J, Lipson H. Ambient wind energy harvesting using cross-flow fluttering. Journal of Applied Physics. 2011;109(2):026104.

LinkOut - more resources