Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Apr 4;8(14):22954-22967.
doi: 10.18632/oncotarget.14578.

LncRNA-SLC6A9-5:2: A potent sensitizer in 131I-resistant papillary thyroid carcinoma with PARP-1 induction

Affiliations

LncRNA-SLC6A9-5:2: A potent sensitizer in 131I-resistant papillary thyroid carcinoma with PARP-1 induction

Cheng Xiang et al. Oncotarget. .

Abstract

Recent studies have indicated that long non-coding RNAs play crucial roles in numerous cancers, including thyroid cancer, while their function in the mechanism of thyroid cancer 131I resistance has not been elucidated to date. The present study identified a functional long non-coding RNA, SLC6A9-5:2, which was involved in the radioactive therapy resistance of thyroid cancer. We demonstrated that SLC6A9-5:2 was remarkably downregulated in 131I-resistant thyroid cancer cell lines and 131I-insensitive patients and was positively correlated with Poly (ADP-ribose) polymerase 1 (PARP-1) expression and its activation. After downregulating SLC6A9 or blocking PARP-1 artificially, the sensitive thyroid cancer cells mostly displayed a tolerant phenotype under 131I exposure. Furthermore, SLC6A9-5:2 overexpression was positively correlated with PARP-1 mRNA and protein levels, which restored the sensitivity of resistant thyroid cancer cells. The present study further revealed that cancer cell death was primarily caused by ATP exhaustion in excessive DNA repair with high PARP-1 activity. In patients with thyroid cancer, a positive correlation between SLC6A9-5:2 and PARP-1 was identified, and low SLC6A9-5:2 expression was associated with a worse prognosis of papillary thyroid carcinoma. Hence, our data provide a new lncRNA-mediated regulatory mechanism implying that SLC6A9-5:2 can be used as a novel therapeutic target for 131I-resistant thyroid cancer.

Keywords: 131I; PARP-1; SLC6A9-5:2; lncRNA; thyroid cancer.

PubMed Disclaimer

Conflict of interest statement

CONFLICTS OF INTEREST

No potential conflicts of interest were disclosed.

Figures

Figure 1
Figure 1. The long-term sub-lethal dose of 131I exposure induces the tolerance of thyroid cancer cells
a. Treatment of the sub-lethal dose of 131I on continuously passaged TPC-1 and BCPAP thyroid cancer cell lines. 131I radioactivity was calculated with a half-time decay of 8.02 days, and the culture medium was changed every other day. 131I tolerance of cancer cells was significantly increased after 10 continuous passages. The 10th generation thyroid cancer cells were considered as 131I-resistant cells. b. Sensitive and resistant cell lines were treated with131I irradiation for 12 h, and apoptosis was measured by flow cytometry. c. Western blot analysis of the DNA damage marker γH2AX under 131I exposure. The data were from one representative experiment of three identically performed. The data were expressed as means±SD. * P<0.05;** P<0.01.
Figure 2
Figure 2. SLC6A9 was downregulated in resistant thyroid cancer cells and was correlated with 131I tolerance
a. Hierarchical clustering analysis around the differentially expressed lncRNAs among 131I-sensitive and -resistant cells; each group includes two independently cultured TPC-1 cell lines. b. Schematic representation of the SLC6A9 location and five distinct fragments of SLC6A9-1. c. The SLC6A9 expression in sensitive and resistant thyroid cancer cells was analyzed by qRT-PCR. d. TPC-1 growth curves with SLC6A9 RNAsi or blank interference (50 nM) transfection with 131I treatment (n= 6 wells per group). The cell absorbance was measured every day for 4 continuous days. e. Western blot analysis of γH2AX after SLC6A9 RNAsi transfection for 48h followed by 131I treatment for 12h. f. The apoptosis rate percentage of TCP-1 and BCPAP cells of SLC6A9 RNAsi-transfected and control groups as measured by flow cytometry. The data are from one representative experiment of three identically performed. The data are expressed as means±SD. ** P<0.01.
Figure 3
Figure 3. SLC6A9 overexpression leads to thyroid cancer cell sensitivity to 131I treatment
a. TPC-1 growth curves with SLC6A9 plasmid or blank transfection following 131I treatment, (n= 6 wells per group). The cell absorbance was measured every day for four continuous days. b. Thyroid cancer cell DNA damage marker γH2AX expression after SLC6A9 plasmid transfection by Western blotting. c. Immunofluorescence images showing γH2AX expression (green) in situ after SLC6A9 plasmid transfection under131I treatment with the quantification displayed on the right. The data are from one representative experiment of three identically performed. The data were expressed as means±SD. *P<0.05;** P<0.01.
Figure 4
Figure 4. SLC6A9 is positively correlated with PARP-1 expression, and PARP-1 inhibition restored the 131I tolerance of thyroid cancer cells
a. Illustration of the predicted target region of the PARP-1 promoter sequence with SLC6A9. b. PARP-1 protein was downregulated after transfection with SLC6A9 RNAsi (50nM). c. Survival curve of sensitive and resistant TPC-1 cells for 4 consecutive days of observation with PARP-1 inhibitor 3-AB treatment under 131I exposure by the MTT assay. 3-AB treatment made sensitive thyroid cancer resistant to 131I, while no difference was observed in the resistant group. d. DNA repair intensity-related protein PAR and γH2AX expression under 131I exposure with 3-AB treatment for 24 h. e. DNA repair intensity in the Ctrl, 131I and 131I+3-AB groups with double-labeled immunofluorescence of PAR and γH2AX. The nuclei were stained with DAPI. 3-AB significantly weakened DNA repair under 131I treatment. Co-localization is demonstrated in the merged image. Magnification:×400. The data were expressed as means±SD. *P<0.05;**P<0.01.
Figure 5
Figure 5. Fragment 1 of SLC6A9 (SLC6A9-1) regulates PARP-1 expression and activity
a. Illustration of the SLC6A9 structure and target region where SLC6A9 binds to the PARP-1 promoter. b. Luciferase activity assays for full-length SLC6A9 and its five segments within the PARP-1 promoter region. The wild-type SLC6A9 sequence was co-transfected with the predicted target sequence, respectively. Both SLC6A9-1 and full-length SLC6A9 enhanced the luciferase activity of the targeted reporter. There was no obvious difference in the luciferase activity for SLC6A9-2, -3, -4, and -5, and the randomly built negative control sequence reporter. The graphs represent data from 3 separate experiments and five identical wells. c. The overexpression of SLC6A9-1 sensitized thyroid cancer cells to 131I treatment (n=6). d. Western blot analysis indicated that the upregulation of SLC6A9-1 resulted in a significant increase of the DNA-repair associated proteins PARP-1, PAR and γH2AX with 131I treatment. The data were expressed as means±SD. *P<0.05;**P<0.01.
Figure 6
Figure 6. Upregulation of the SLC6A9-PARP-1 pathway enhanced the sensitivity to 131I treatment through energy exhaustion during excess DNA repair
a. The ATP/ADP ratio in TPC-1 cells under 131I exposure. The ATP and ADP content was calculated according to the standard curve previously drawn (n=3). b. The ATP/ADP ratio in the TPC-1 cell line treated with 3-AB and 131I. The energy consuming condition was detected every 12h using a detection kit. c. The ATP/ADP ratio with SLC6A9 and SLC6A9-1 transfection, which protected thyroid cancer cells from energy exhaustion. d. 3-AB reversed the energy exhaustion condition induced by SLC6A9 and SLC6A9-1 in res-TPC-1 cells. e. Supplementation with ATP (2mM) protected thyroid cancer cells from apoptosis in SLC6A9-transfected thyroid cancer cells. f, g. DNA repair was demonstrated in the SLC6A9 and SLC6AP+ATP groups with γH2AX observation. In the SLC6A9 and SLC6AP+ATP groups, DNA repair both remained at a high level and showed no difference. The data were expressed as means±SD. *P<0.05; **P<0.01.
Figure 7
Figure 7. Low SLC6A9 expression predicted a worse prognosis in 131I-treated patients
a. In a group of 52 patients receiving 131I treatment, qRT-PCR showed that high SLC6A9 had a higher disease-free rate compared with the low SLC6A9 group by Kaplan-Meier curve analysis. b. SLC6A9 expression was measured by qRT-PCR in thyroid cancer tissues and adjacent normal thyroid tissues. The results were expressed as relative Log2 ratios. c. The relationship between PARP-1 and SLC6A9 expression was explored by Spearman's correlation in thyroid cancer specimens (r=0.715).

References

    1. Jung CK, Little MP, Lubin JH, Brenner AV, Wells SA, Jr, Sigurdson AJ, Nikiforov YE. The increase in thyroid cancer incidence during the last four decades is accompanied by a high frequency of BRAF mutations and a sharp increase in RAS mutations. J Clin Endocrinol Metab. 2014;99:E276–85. doi: 10.1210/jc.2013-2503. - DOI - PMC - PubMed
    1. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, Pacini F, Randolph GW, Sawka AM, Schlumberger M, Schuff KG, Sherman SI, Sosa JA, et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid. 2016;26:1–133. doi: 10.1089/thy.2015.0020. - DOI - PMC - PubMed
    1. Cabanillas ME, McFadden DG, Durante C. Thyroid cancer. Lancet. 2016 doi: 10.1016/S0140-6736(16)30172-6. - DOI - PubMed
    1. Miftari R, Topciu V, Nura A, Haxhibeqiri V. Management of the Patient with Aggressive and Resistant Papillary Thyroid Carcinoma. Med Arch. 2016;70:314–7. doi: 10.5455/medarh.2016.70.314-317. - DOI - PMC - PubMed
    1. Lupoli R, Cacciapuoti M, Tortora A, Barba L, Verde N, Romano F, Vastarella M, Fonderico F, Masone S, Milone M, Lupoli G, Lupoli GA. Clinical outcome in differentiated thyroid carcinoma and microcarcinoma. Int J Surg. 2014;12:S148–51. doi: 10.1016/j.ijsu.2014.05.024. - DOI - PubMed

MeSH terms

Substances