Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Apr;64(4):717-724.
doi: 10.1109/TUFFC.2017.2651648. Epub 2017 Jan 11.

A 200-1380-kHz Quadrifrequency Focused Ultrasound Transducer for Neurostimulation in Rodents and Primates: Transcranial In Vitro Calibration and Numerical Study of the Influence of Skull Cavity

A 200-1380-kHz Quadrifrequency Focused Ultrasound Transducer for Neurostimulation in Rodents and Primates: Transcranial In Vitro Calibration and Numerical Study of the Influence of Skull Cavity

Charlotte Constans et al. IEEE Trans Ultrason Ferroelectr Freq Control. 2017 Apr.

Erratum in

Abstract

Low intensity transcranial focused ultrasound has been demonstrated to produce neuromodulation in both animals and humans. Primarily for technical reasons, frequency is one of the most poorly investigated critical wave parameters. We propose the use of a quadri-band transducer capable of operating at 200, 320, 850, and 1380 kHz for further investigation of the frequency dependence of neuromodulation efficacy while keeping the position of the transducer fixed with respect to the subject's head. This paper presents the results of the transducer calibration in water, in vitro transmission measurements through a monkey skull flap, 3-D simulations based on both a μ -computed tomography ( μ CT)-scan of a rat and on CT-scans of two macaques. A maximum peak pressure greater than 0.52 MPa is expected at each frequency in rat and macaque heads. According to the literature, our transducer can achieve neuromodulation in rodents and primates at each four frequencies. The impact of standing waves is shown to be most prominent at the lowest frequencies.

PubMed Disclaimer

Publication types