Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Sep:145:403-17.
doi: 10.1242/jeb.145.1.403.

Serotonin differentially modulates two K+ currents in the Retzius cell of the leech

Affiliations

Serotonin differentially modulates two K+ currents in the Retzius cell of the leech

J Acosta-Urquidi et al. J Exp Biol. 1989 Sep.

Abstract

The effects of 100 mumol l-1 serotonin (5-HT) were investigated on the Na+- and Ca2+-dependent action potential and distinct K+ currents in the Retzius (R) cells of the hirudinid leeches Macrobdella decora and Hirudo medicinalis by conventional current-clamp and two-microelectrode voltage-clamp techniques. 1. In normal Na+-containing Ringer, 5-HT decreased the duration of the action potential prolonged by 5 mmol l-1 tetraethylammonium (TEA+) chloride. 2. In Na+-free saline containing 25 mumol l-1 TEA+ to block IK, 5-HT reduced the amplitude and duration of Ca2+ spikes evoked by intracellular current injection. 3. Under voltage-clamp, 5-HT enhanced the peak amplitude of an early transient 4-aminopyridine (4-AP)-sensitive, voltage-dependent outward current, termed IA. A small but significant increase in the time constant of inactivation (tau off) of IA was also measured after exposure to 5-HT. 4. 5-HT suppressed the peak and steady-state amplitudes of a delayed TEA+-sensitive, voltage-dependent outward current, termed IK. These results demonstrate differential simultaneous modulation of distinct K+ currents in the Retzius cell of the leech by the endogenous transmitter serotonin. These cells contain and release 5-HT, and are believed to be multifunction neurons implicated in feeding and swimming. This modulation may change the excitable properties of the cell, leading to a negative feedback autoregulation of its transmitter output.

PubMed Disclaimer

Publication types