Genome-wide analysis of canonical Wnt target gene regulation in Xenopus tropicalis challenges β-catenin paradigm
- PMID: 28095618
- PMCID: PMC5299483
- DOI: 10.1002/dvg.22991
Genome-wide analysis of canonical Wnt target gene regulation in Xenopus tropicalis challenges β-catenin paradigm
Abstract
Wnt/β-catenin signaling is an important cell-to-cell signaling mechanism that controls gene expression during embryonic development and is critically implicated in human diseases. Developmental, cellular, and transcriptional responses to Wnt signaling are remarkably context-specific in different biological processes. While nuclear localization of β-catenin is the key to activation of the Wnt/β-catenin pathway and target gene expression, the molecular mechanisms of how the same Wnt/β-catenin signaling pathway induces specific responses remain undetermined. Recent advances in high-throughput sequencing technologies and the availability of genome information for Xenopus tropicalis have enabled us to uncover a genome-wide view of Wnt/β-catenin signaling in early vertebrate embryos, which challenges previous concepts about molecular mechanisms of Wnt target gene regulation. In this review, we summarize our experimental approaches, introduce the technologies we employed and focus on recent findings about Wnt target gene regulation from Xenopus research. We will also discuss potential functions of widespread β-catenin binding in the genome that we discovered in this species.
Keywords: ChIP-seq; RNA-seq; Wnt signaling; Xenopus; gastrula; β-catenin.
© 2017 The Authors genesis Published by Wiley Periodicals, Inc.
Figures




Similar articles
-
Tissue- and stage-specific Wnt target gene expression is controlled subsequent to β-catenin recruitment to cis-regulatory modules.Development. 2016 Jun 1;143(11):1914-25. doi: 10.1242/dev.131664. Epub 2016 Apr 11. Development. 2016. PMID: 27068107 Free PMC article.
-
Brain enlargement with rostral bias in larvae from a spontaneously occurring female variant line of Xenopus; role of aberrant embryonic Wnt/β-catenin signaling.Cells Dev. 2024 Sep;179:203918. doi: 10.1016/j.cdev.2024.203918. Epub 2024 Apr 3. Cells Dev. 2024. PMID: 38574816
-
Isoquercitrin suppresses colon cancer cell growth in vitro by targeting the Wnt/β-catenin signaling pathway.J Biol Chem. 2014 Dec 19;289(51):35456-67. doi: 10.1074/jbc.M114.621599. Epub 2014 Oct 30. J Biol Chem. 2014. PMID: 25359775 Free PMC article.
-
FAK and WNT signaling: the meeting of two pathways in cancer and development.Anticancer Agents Med Chem. 2011 Sep;11(7):600-6. doi: 10.2174/187152011796817673. Anticancer Agents Med Chem. 2011. PMID: 21707509 Review.
-
Genomic insights into WNT/β-catenin signaling.Trends Pharmacol Sci. 2014 Feb;35(2):103-9. doi: 10.1016/j.tips.2013.11.007. Epub 2013 Dec 20. Trends Pharmacol Sci. 2014. PMID: 24365576 Free PMC article. Review.
Cited by
-
FZD6 triggers Wnt-signalling driven by WNT10BIVS1 expression and highlights new targets in T-cell acute lymphoblastic leukemia.Hematol Oncol. 2021 Aug;39(3):364-379. doi: 10.1002/hon.2840. Epub 2021 Feb 16. Hematol Oncol. 2021. PMID: 33497493 Free PMC article.
-
Foxh1/Nodal Defines Context-Specific Direct Maternal Wnt/β-Catenin Target Gene Regulation in Early Development.iScience. 2020 Jul 24;23(7):101314. doi: 10.1016/j.isci.2020.101314. Epub 2020 Jun 25. iScience. 2020. PMID: 32650116 Free PMC article.
-
A new CUT&RUN low volume-urea (LoV-U) protocol optimized for transcriptional co-factors uncovers Wnt/β-catenin tissue-specific genomic targets.Development. 2022 Dec 1;149(23):dev201124. doi: 10.1242/dev.201124. Epub 2022 Nov 30. Development. 2022. PMID: 36355069 Free PMC article.
-
Rspo2 inhibits TCF3 phosphorylation to antagonize Wnt signaling during vertebrate anteroposterior axis specification.Sci Rep. 2021 Jun 28;11(1):13433. doi: 10.1038/s41598-021-92824-6. Sci Rep. 2021. PMID: 34183732 Free PMC article.
-
Plasmodium falciparum Merozoite Associated Armadillo Protein (PfMAAP) Is Apically Localized in Free Merozoites and Antibodies Are Associated With Reduced Risk of Malaria.Front Immunol. 2020 Apr 7;11:505. doi: 10.3389/fimmu.2020.00505. eCollection 2020. Front Immunol. 2020. PMID: 32318061 Free PMC article.
References
-
- Akkers, R. C. , Jacobi, U. G. , & Veenstra, G. J. C. (2012). Chromatin immunoprecipitation analysis of Xenopus embryos. Methods in Molecular Biology (Clifton, N J), 917, 279–292. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources