Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jan 17;13(1):23.
doi: 10.1186/s12917-017-0946-2.

The biomedical piglet: establishing reference intervals for haematology and clinical chemistry parameters of two age groups with and without iron supplementation

Affiliations

The biomedical piglet: establishing reference intervals for haematology and clinical chemistry parameters of two age groups with and without iron supplementation

Domenico Ventrella et al. BMC Vet Res. .

Abstract

Background: The similarities between swine and humans in physiological and genomic patterns, and the great correlation in size and anatomy, make pigs extremely useful in preclinical studies. New-born piglets can represent a model for congenital and genetic diseases in new-born children. It is known that piglets may have significant differences in clinicopathological results compared to adult pigs. Therefore, adult laboratory reference intervals cannot be applied to piglets. The aim of this study was to compare haematological and chemical variables in piglets of two ages and determinate age-related reference intervals for commercial hybrid young pigs. Blood samples were collected under general anaesthesia from 130 animals divided into five- (P5) and 30- (P30) day-old piglets. Only P30 animals were treated with parenteral iron after birth. Samples were analysed using automated haematology (ADVIA 2120) and chemistry analysers, and age-related reference intervals were calculated.

Results: Significant higher values of RBC, Hb and HCT were observed in P30 animals when compared to P5, with an opposite trend for MCV. These results were associated with a reduction of the RBC regeneration process and the thrombopoietic response. The TSAT and TIBC were significantly higher in P30 compared to P5; however, piglets remained iron deficient compared to adult reference intervals reported previously.

Conclusions: In conclusion, this paper emphasises the high variability occurring in clinicopathological variables between new-born and 30-day-old pigs, and between piglets and adult pigs. This study provides valuable reference data for piglets at precise ages and could be used in the future as historical control improving the Reduction in animal experiments, as suggested by the 3Rs principle.

Keywords: ADVIA 2120; Clinical chemistry; Haematology; Reference intervals; Swine.

PubMed Disclaimer

References

    1. Kuzmuk KN, Schook LB. Pigs as a model for biomedical Sciences. In: Rothschild MF, Ruvinsky A, editors. The Genetics of the Pig. 2. Wallingford: CAB International; 2011. pp. 426–444.
    1. Tumbleson ME, Schook LB. Advances in Swine in Biomedical Research. New York: Plenum Press; 1996.
    1. Humphray SJ, Scott CE, Clark R, Marron B, Bender C, Camm N, et al. A high utility integrated map of the pig genome. Genome Biol. 2007;8:R139. doi: 10.1186/gb-2007-8-7-r139. - DOI - PMC - PubMed
    1. Forni M, Mazzola S, Ribeiro LA, Pirrone F, Zannoni A, Bernardini C, et al. Expression of endothelin-1 system in a pig model of endotoxic shock. Regul Pept. 2005;131:89–96. doi: 10.1016/j.regpep.2005.07.001. - DOI - PubMed
    1. Busnelli M, Froio A, Bacci ML, Giunti M, Cerrito MG, Giovannoni R, et al. Pathogenetic role of hypercholesterolemia in a novel preclinical model of vascular injury in pigs. Atherosclerosis. 2009;207:384–390. doi: 10.1016/j.atherosclerosis.2009.05.022. - DOI - PubMed