Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Jan 18;15(1):11.
doi: 10.1186/s12916-017-0779-7.

Post-stroke dementia - a comprehensive review

Affiliations
Review

Post-stroke dementia - a comprehensive review

Milija D Mijajlović et al. BMC Med. .

Abstract

Post-stroke dementia (PSD) or post-stroke cognitive impairment (PSCI) may affect up to one third of stroke survivors. Various definitions of PSCI and PSD have been described. We propose PSD as a label for any dementia following stroke in temporal relation. Various tools are available to screen and assess cognition, with few PSD-specific instruments. Choice will depend on purpose of assessment, with differing instruments needed for brief screening (e.g., Montreal Cognitive Assessment) or diagnostic formulation (e.g., NINDS VCI battery). A comprehensive evaluation should include assessment of pre-stroke cognition (e.g., using Informant Questionnaire for Cognitive Decline in the Elderly), mood (e.g., using Hospital Anxiety and Depression Scale), and functional consequences of cognitive impairments (e.g., using modified Rankin Scale). A large number of biomarkers for PSD, including indicators for genetic polymorphisms, biomarkers in the cerebrospinal fluid and in the serum, inflammatory mediators, and peripheral microRNA profiles have been proposed. Currently, no specific biomarkers have been proven to robustly discriminate vulnerable patients ('at risk brains') from those with better prognosis or to discriminate Alzheimer's disease dementia from PSD. Further, neuroimaging is an important diagnostic tool in PSD. The role of computerized tomography is limited to demonstrating type and location of the underlying primary lesion and indicating atrophy and severe white matter changes. Magnetic resonance imaging is the key neuroimaging modality and has high sensitivity and specificity for detecting pathological changes, including small vessel disease. Advanced multi-modal imaging includes diffusion tensor imaging for fiber tracking, by which changes in networks can be detected. Quantitative imaging of cerebral blood flow and metabolism by positron emission tomography can differentiate between vascular dementia and degenerative dementia and show the interaction between vascular and metabolic changes. Additionally, inflammatory changes after ischemia in the brain can be detected, which may play a role together with amyloid deposition in the development of PSD. Prevention of PSD can be achieved by prevention of stroke. As treatment strategies to inhibit the development and mitigate the course of PSD, lowering of blood pressure, statins, neuroprotective drugs, and anti-inflammatory agents have all been studied without convincing evidence of efficacy. Lifestyle interventions, physical activity, and cognitive training have been recently tested, but large controlled trials are still missing.

Keywords: Biomarkers; Cognitive impairment; Definitions and classification; Dementia; Diagnosis; Interventions; Neuroimaging; Stroke.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Venn diagram illustrating the overlap of constructs used to define cognitive states relevant to stroke. CI cognitive impairment, PSD post-stroke dementia, VaD vascular dementia, VCI vascular cognitive impairment
Fig. 2
Fig. 2
Cognitive “trajectory” in stroke. a A traditional view of post-stroke cognitive decline where, following a stroke, some have a degree of fixed cognitive decline causing a dementia that can be detected using a cognitive screening tool. b The “real world”, where there are various degrees of pre-stroke cognitive decline and various post-stroke various cognitive trajectories. This complexity requires differing approaches to assessment at various time-points

References

    1. Strong K, Mathers C, Bonita R. Preventing stroke: saving lives around the world. Lancet Neurol. 2007;6:182–187. doi: 10.1016/S1474-4422(07)70031-5. - DOI - PubMed
    1. Lees R, Fearon P, Harrison JK, Broomfield NM, Quinn TJ. Cognitive and mood assessment in stroke research: focused review of contemporary studies. Stroke. 2012;43:1678–1680. doi: 10.1161/STROKEAHA.112.653303. - DOI - PubMed
    1. McKevitt C, Fudge N, Redfern J, et al. Self-reported long term needs after stroke. Stroke. 2011;42:1398–3. doi: 10.1161/STROKEAHA.110.598839. - DOI - PubMed
    1. Pollock A, St George B, Fenton M, Firkins L. Top ten research priorities relating to life after stroke. Lancet Neurol. 2012;11:209. doi: 10.1016/S1474-4422(12)70029-7. - DOI - PubMed
    1. Fride Y, Adamit T, Maeir A, Ben Assayag E, Bornstein NM, Korczyn AD, Katz N. What are the correlates of cognition and participation to return to work after first ever mild stroke? Top Stroke Rehabil. 2015;22(5):317–325. doi: 10.1179/1074935714Z.0000000013. - DOI - PubMed