Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Dec 28;4(4):293-299.
doi: 10.14218/JCTH.2016.00046. Epub 2016 Dec 26.

miR-29a Promotes Lipid Droplet and Triglyceride Formation in HCV Infection by Inducing Expression of SREBP-1c and CAV1

Affiliations

miR-29a Promotes Lipid Droplet and Triglyceride Formation in HCV Infection by Inducing Expression of SREBP-1c and CAV1

Mennatallah Mamdouh Mahdy et al. J Clin Transl Hepatol. .

Abstract

Aims: To examine the regulation of SREBP-1c and CAV1 by microRNA-29a (miR-29a) in cells infected with hepatitis C virus (HCV) in an attempt to control HCV-induced non-alcoholic fatty liver disease. Methods: In order to examine the manipulation of SREBP-1c and CAV1 by miR-29a, oleic acid (OA)-treated JFH-I-infected Huh-7 cells were used. OA was added 24 h post-transfection and gene expression was investigated by qRT-PCR at 48 h post treatment. The functional impact of the observed alteration in SREBP-1c and CAV1 expression was analyzed by examining lipid droplet (LD) and triglyceride (TG) content at 72 h post-OA treatment using light microscopy and spectrophotometry, respectively. Viral load was quantified by qRT-PCR at 72 h post-transfection. Results: OA treatment induced the expression of miR-29a and SREBP-1c, as compared to untreated cells. Forced miR-29a expression led to a significant up-regulation of SREBP-1c as well as CAV1 compared to mock untransfected cells. Ectopic expression of miR-29a resulted in a marked increase in LDs and their respective TGs, while miR-29a antagomirs decreased both the LD and TG content compared to mock untransfected cells. Moreover, forcing the expression of miR-29a in JFH-1 HCV-infected Huh-7 cells resulted in 53% reduction in viral titers compared to mock untransfected Huh-7 cells. Conclusion: Inducing miR-29a expression significantly induces SREBP-1c and CAV1 expression, thereby increasing LDs as well as their respective TGs. Nonetheless, forcing the expression of miR-29a resulted in reduction of HCV RNA levels in Huh-7 cells.

Keywords: Caveolin-1; HCV; Lipid droplets; MicroRNA-29a; SREBP-1c.

PubMed Disclaimer

Conflict of interest statement

None

Figures

Fig. 1.
Fig. 1.. Impact of oleic acid (OA) treatment on miR-29a, SREBP-1c and CAV1 mRNA expression and on lipid droplet (LD) and triglyceride (TG) content in JFH-I-infected Huh-7 cells.
The OA treatment led to A) significant up-regulation of miR-29a mRNA expression (17.74 ± 2.162, p = 0.0002***, n = 5), B) significant up-regulation of SREBP-1c mRNA expression (1.591 ± 0.2129, p = 0.0443*, n = 5) and C) no significant change in the mRNA expression of CAV1 (1.153 ± 0.1940, n = 10), as compared to untreated cells (1.010 ± 0.08429), (1.000 ± 0.009492), (1.003 ± 0.02906), respectively. Results are expressed as a mean ± SEM. OA treatment led to D) marked increase in LDs, as shown by increase in the red coloration due to the oil red O staining, and as compared to untreated cells, n = 3. Scale bars of 10 μm are shown on the images. E) TG concentration is significantly increased upon OA treatment (102.3 ± 3.068, p = 0.0305*, n = 5) compared to untreated cells (84.58 ± 6.573). Results are expressed as a mean ± SEM. Student’s t-test was used for the statistical analysis.
Fig. 2.
Fig. 2.. Impact of manipulating miR-29a on SREBP-1c and CAV1 mRNA expression and on cellular lipid droplet (LD) and triglyceride (TG) content in JFH-I-infected Huh-7 cells.
miR-29a mimics or antagomirs were transfected into oleic acid-treated JFH-1-infected Huh-7 cells. A) Efficient delivery of miR-29a mimics into Huh-7 cells was confirmed by measuring the amount of miRNA in mimicked cells. miR-29a mimic increased miR-29a expression by a mean of 1157.018-fold (p = 0.0035**, n = 4) and the antagomir decreased its expression by a mean of 0.9-fold (p = 0.0111*, n = 4) in comparison of transfected versus mock cells. B) Mimicking with miR-29a lead to up-regulation of SREBP-1c mRNA expression (1.369 ± 0.1292, p = 0.0276*, n = 9) with no significant change observed for antagonizing miR-29a expression (1.067 ± 0.1949, n = 9) compared to untransfected cells (1.043 ± 0.07413). C) miR-29a mimics induced the mRNA expression of CAV1 (1.606 ± 0.1704, p = 0.0337*, n = 9), while antagomirs did not significantly alter CAV1 mRNA expression (1.406 ± 0.1134, n = 9) compared to untransfected cells (1.081 ± 0.1350). D) Mimicking of miR-29a resulted in increased amount of LDs, as shown by increase in the red coloration due to the oil red O staining, while miR-29a antagomir showed a slight decrease in the amount of LDs compared to untransfected cells, n = 3. Scale bars of 10 μm are shown on the images. E) Mimicking of miR-29a also significantly increased the concentration of TGs (114.8 ± 2.578, p = 0.0038**, n = 6) and antagonizing miR-29a significantly decreased TG concentration (80.73 ± 4.382, p = 0.0125*, n = 2) compared to untransfected cells (99.87 ± 2.352). All results are expressed as a mean ± SEM. Student’s t-test was used for the statistical analysis.
Fig. 3.
Fig. 3.. Impact of SREBP-1c siRNA on lipid droplet (LD) formation and CAV1 expression.
A) SREBP siRNA were efficiently transfected into oleic acid-treated JFH-1-infected (p < 0.0001***, n = 9). B) A significant decrease in the intracellular level of LDs, as shown by decrease in the amount of the red-colored LDs due to the oil red O staining (n = 3) compared to mock untransfected controls. C) SREBP siRNA transfection led to significant up-regulation of CAV1 (p = 0.0030**, n = 9). Results are expressed as mean ± SEM. Student’s t-test was used for the statistical analysis.
Fig. 4.
Fig. 4.. Impact of manipulating miR-29a on viral load.
Mimicking of miR-29a in JFH-I-infected Huh-7 cells resulted in 53% reduction (153380 ± 8850, p = 0.0499*, n = 4) in viral titers compared to untransfected Huh-7 cells (289005 ± 30205). Results are expressed as mean ± SEM. Student’s t-test was used for the statistical analysis.

Similar articles

Cited by

References

    1. Asselah T, Rubbia-Brandt L, Marcellin P, Negro F. Steatosis in chronic hepatitis C: why does it really matter? Gut. 2006;55:123–130. doi: 10.1136/gut.2005.069757. - DOI - PMC - PubMed
    1. Thomopoulos KC, Arvaniti V, Tsamantas AC, Dimitropoulou D, Gogos CA, Siagris D, et al. Prevalence of liver steatosis in patients with chronic hepatitis B: a study of associated factors and of relationship with fibrosis. Eur J Gastroenterol Hepatol. 2006;18:233–237. - PubMed
    1. Mirandola S, Bowman D, Hussain MM, Alberti A. Hepatic steatosis in hepatitis C is a storage disease due to HCV interaction with microsomal triglyceride transfer protein (MTP) Nutr Metab (Lond) 2010;7:13. doi: 10.1186/1743-7075-7-13. - DOI - PMC - PubMed
    1. Singaravelu R, Chen R, Lyn RK, Jones DM, O’Hara S, Rouleau Y, et al. Hepatitis C virus induced up-regulation of microRNA-27: a novel mechanism for hepatic steatosis. Hepatology. 2014;59:98–108. doi: 10.1002/hep.26634. - DOI - PubMed
    1. Afzal MS, Zaidi NU, Dubuisson J, Rouille Y. Hepatitis C virus capsid protein and intracellular lipids interplay and its association with hepatic steatosis. Hepat Mon. 2014;14:e17812. doi: 10.5812/hepatmon.17812. - DOI - PMC - PubMed