Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2017 Apr 15;31(7):606-612.
doi: 10.1002/rcm.7829.

Comparative evaluation of label-free quantification methods for shotgun proteomics

Affiliations
Comparative Study

Comparative evaluation of label-free quantification methods for shotgun proteomics

Julia A Bubis et al. Rapid Commun Mass Spectrom. .

Abstract

Rationale: Label-free quantification (LFQ) is a popular strategy for shotgun proteomics. A variety of LFQ algorithms have been developed recently. However, a comprehensive comparison of the most commonly used LFQ methods is still rare, in part due to a lack of clear metrics for their evaluation and an annotated and quantitatively well-characterized data set.

Methods: Five LFQ methods were compared: spectral counting based algorithms SIN , emPAI, and NSAF, and approaches relying on the extracted ion chromatogram (XIC) intensities, MaxLFQ and Quanti. We used three criteria for performance evaluation: coefficient of variation (CV) of protein abundances between replicates; analysis of variance (ANOVA); and the root-mean-square error of logarithmized calculated concentration ratios, referred to as standard quantification error (SQE). Comparison was performed using a quantitatively annotated publicly available data set.

Results: The best results in terms of inter-replicate reproducibility were observed for MaxLFQ and NSAF, although they exhibited larger standard quantification errors. Using NSAF, all quantitatively annotated proteins were correctly identified in the Bonferronni-corrected results of the ANOVA test. SIN was found to be the most accurate in terms of SQE. Finally, the current implementations of XIC-based LFQ methods did not outperform the methods based on spectral counting for the data set used in this study.

Conclusions: Surprisingly, the performances of XIC-based approaches measured using three independent metrics were found to be comparable with more straightforward and simple MS/MS-based spectral counting approaches. The study revealed no clear leader among the latter. Copyright © 2017 John Wiley & Sons, Ltd.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources