Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comment
. 2017 Jan 19:6:e22915.
doi: 10.7554/eLife.22915.

Small molecules remain on target for c-Myc

Affiliations
Comment

Small molecules remain on target for c-Myc

Linchong Sun et al. Elife. .

Abstract

Targeting the transcription factor c-Myc via one of its coactivator proteins is a promising strategy for cancer therapy.

Keywords: Reproducibility Project: Cancer Biology; bromodomain inhibitor; cancer biology; human; metascience; mouse; myeloma; replication; reproducibility.

PubMed Disclaimer

Conflict of interest statement

The authors declare that no competing interests exist.

Figures

Figure 1.
Figure 1.. The c-Myc-related gene transcription network.
The transcription factor c-Myc (orange) is a cancerous protein that is also involved in metabolism and other processes in normal cells. The small molecule JQ1 inhibits the progress of cancers in mouse models by inhibiting both c-Myc itself and one of its coactivators (BRD4; green). More effective therapy could be achieved by targeting two or more molecules or processes in the network. For example, the different pathways that lead to the cancer (such as the Wnt and MAPK/ERK pathways) could be targeted, as could various cofactors (such as WDR5 and TBP) and different metabolic enzymes (such as PDK1, GLS1 and LDHA). In some cases, such as for some of the metabolic enzymes, small-molecule inhibitors are already known; in other cases, such inhibitors have not yet been discovered (indicated by question marks). Me and Ac represent methylation and acetylation. BRD4: bromodomain-containing protein 4. P-TEFb: positive transcription elongation factor complex b.

Comment on

References

    1. Aird F, Kandela I, Mantis C, Reproducibility Project: Cancer Biology Replication Study: BET bromodomain inhibition as a therapeutic strategy to target c-Myc. eLife. 2017;6:e21253. doi: 10.7554/eLife.21253. - DOI - PMC - PubMed
    1. Berthon C, Raffoux E, Thomas X, Vey N, Gomez-Roca C, Yee K, Taussig DC, Rezai K, Roumier C, Herait P, Kahatt C, Quesnel B, Michallet M, Recher C, Lokiec F, Preudhomme C, Dombret H. Bromodomain inhibitor OTX015 in patients with acute leukaemia: a dose-escalation, phase 1 study. The Lancet Haematology. 2016;3:e186–e195. doi: 10.1016/S2352-3026(15)00247-1. - DOI - PubMed
    1. Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, Thompson R, Lee CT, Lopaschuk GD, Puttagunta L, Bonnet S, Harry G, Hashimoto K, Porter CJ, Andrade MA, Thebaud B, Michelakis ED. A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell. 2007;11:37–51. doi: 10.1016/j.ccr.2006.10.020. - DOI - PubMed
    1. Dawson MA, Prinjha RK, Dittmann A, Giotopoulos G, Bantscheff M, Chan WI, Robson SC, Chung CW, Hopf C, Savitski MM, Huthmacher C, Gudgin E, Lugo D, Beinke S, Chapman TD, Roberts EJ, Soden PE, Auger KR, Mirguet O, Doehner K, Delwel R, Burnett AK, Jeffrey P, Drewes G, Lee K, Huntly BJ, Kouzarides T. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature. 2011;478:529–533. doi: 10.1038/nature10509. - DOI - PMC - PubMed
    1. Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell. 2012;150:12–27. doi: 10.1016/j.cell.2012.06.013. - DOI - PubMed

MeSH terms

LinkOut - more resources