Large phase-shifts of circadian rhythms caused by induced running in a re-entrainment paradigm: the role of pulse duration and light
- PMID: 2810152
- DOI: 10.1007/BF00610880
Large phase-shifts of circadian rhythms caused by induced running in a re-entrainment paradigm: the role of pulse duration and light
Abstract
Bouts of induced wheel-running, 3 h long, accelerate the rate of re-entrainment of hamsters' activity rhythms to light-dark (LD) cycles that have been phase-advanced by 8 h (Mrosovsky and Salmon 1987). The bouts of running are given early in the first night of the new LD cycle, and by the second night the phase advance in activity onset already averages 7 h. Such large shifts contrast with the mean phase advance of less than 1 h at the peak of the phase response curve when hamsters in constant darkness (DD) experience 2-h pulses of induced activity (Reebs and Mrosovsky 1989). The present paper investigates pulse duration and light as possible causes for the discrepancy in shift amplitude between these two studies. In a first experiment, pulses of induced wheel-running 1 h, 3 h, or 5 h long were given at circadian times (CT) 6 and 22-2 to hamsters free-running in DD. Pulses given at CT 6 caused phase-advances of up to 2.8 h, whereas pulses at CT 22-2 resulted in delays of up to 1.0 h. Shifts after 3-h and 5-h pulses did not differ, but were larger than after 1-h pulses, and larger than after the 2-h pulses given in DD by Reebs and Mrosovsky (1989). Thus 3 h appears to be the minimum pulse duration necessary to obtain maximum phase-shifting effects. In a second experiment, the re-entrainment design of Mrosovsky and Salmon (1987) was repeated with the light portion of the shifted LD cycle eliminated.(ABSTRACT TRUNCATED AT 250 WORDS)
References
Publication types
MeSH terms
LinkOut - more resources
Research Materials