Production of lovastatin and itaconic acid by Aspergillus terreus: a comparative perspective
- PMID: 28102516
- PMCID: PMC5247550
- DOI: 10.1007/s11274-017-2206-9
Production of lovastatin and itaconic acid by Aspergillus terreus: a comparative perspective
Abstract
Aspergillus terreus is a textbook example of an industrially relevant filamentous fungus. It is used for the biotechnological production of two valuable metabolites, namely itaconic acid and lovastatin. Itaconic acid serves as a precursor in polymer industry, whereas lovastatin found its place in the pharmaceutical market as a cholesterol-lowering statin drug and a precursor for semisynthetic statins. Interestingly, their biosynthetic gene clusters were shown to reside in the common genetic neighborhood. Despite the genomic proximity of the underlying biosynthetic genes, the production of lovastatin and itaconic acid was shown to be favored by different factors, especially with respect to pH values of the broth. While there are several reviews on various aspects of lovastatin and itaconic acid production, the survey on growth conditions, biochemistry and morphology related to the formation of these two metabolites has never been presented in the comparative manner. The aim of the current review is to outline the correlations and contrasts with respect to process-related and biochemical discoveries regarding itaconic acid and lovastatin production by A. terreus.
Keywords: Aspergillus terreus; Itaconic acid; Lovastatin; Metabolites.
Conflict of interest statement
Tomasz Boruta and Marcin Bizukojc declare that they have no conflict of interest. Ethical approval This article does not contain any studies with human participants or animals performed by any of the authors
Figures

Similar articles
-
Effects of lactose and glucose on production of itaconic acid and lovastatin by Aspergillus terreus ATCC 20542.J Biosci Bioeng. 2007 Jul;104(1):9-13. doi: 10.1263/jbb.104.9. J Biosci Bioeng. 2007. PMID: 17697977
-
Exploring the Brazilian diversity of Aspergillus sp. strains for lovastatin and itaconic acid production.Fungal Genet Biol. 2020 May;138:103367. doi: 10.1016/j.fgb.2020.103367. Epub 2020 Mar 18. Fungal Genet Biol. 2020. PMID: 32198121
-
Process development of itaconic acid production by a natural wild type strain of Aspergillus terreus to reach industrially relevant final titers.Appl Microbiol Biotechnol. 2017 May;101(10):4063-4072. doi: 10.1007/s00253-017-8192-x. Epub 2017 Feb 25. Appl Microbiol Biotechnol. 2017. PMID: 28235991
-
Biotechnological production of itaconic acid-things you have to know.Appl Microbiol Biotechnol. 2018 May;102(9):3901-3914. doi: 10.1007/s00253-018-8895-7. Epub 2018 Mar 13. Appl Microbiol Biotechnol. 2018. PMID: 29536145 Review.
-
Citric acid and itaconic acid accumulation: variations of the same story?Appl Microbiol Biotechnol. 2019 Apr;103(7):2889-2902. doi: 10.1007/s00253-018-09607-9. Epub 2019 Feb 13. Appl Microbiol Biotechnol. 2019. PMID: 30758523 Free PMC article. Review.
Cited by
-
Genomic Analysis of Aspergillus Section Terrei Reveals a High Potential in Secondary Metabolite Production and Plant Biomass Degradation.J Fungi (Basel). 2024 Jul 22;10(7):507. doi: 10.3390/jof10070507. J Fungi (Basel). 2024. PMID: 39057392 Free PMC article.
-
Anti-leishmanial compounds from microbial metabolites: a promising source.Appl Microbiol Biotechnol. 2021 Nov;105(21-22):8227-8240. doi: 10.1007/s00253-021-11610-6. Epub 2021 Oct 9. Appl Microbiol Biotechnol. 2021. PMID: 34625819 Review.
-
Genomic Analysis and Antimicrobial Components of M7, an Aspergillus terreus Strain Derived from the South China Sea.J Fungi (Basel). 2022 Oct 7;8(10):1051. doi: 10.3390/jof8101051. J Fungi (Basel). 2022. PMID: 36294615 Free PMC article.
-
Transcriptional Activation of Biosynthetic Gene Clusters in Filamentous Fungi.Front Bioeng Biotechnol. 2022 Jul 15;10:901037. doi: 10.3389/fbioe.2022.901037. eCollection 2022. Front Bioeng Biotechnol. 2022. PMID: 35910033 Free PMC article. Review.
-
Advanced Fungal Biotechnologies in Accomplishing Sustainable Development Goals (SDGs): What Do We Know and What Comes Next?J Fungi (Basel). 2024 Jul 22;10(7):506. doi: 10.3390/jof10070506. J Fungi (Basel). 2024. PMID: 39057391 Free PMC article. Review.
References
-
- Abd Rahim MH, Hasan H, Montoya A, Abbas A. Lovastatin and (+)-geodin production by Aspergillus terreus from crude glycerol. Eng. Life Sci. 2015;15:220–228. doi: 10.1002/elsc.201400140. - DOI
-
- Alberts AW, Chen J, Kuron G, Hunt V, Huff J, Hoffman C, Rothrock J, Lopez M, Joshua H, Harris E, Patchett A, Monaghan R, Currie S, Stapley E, Albers-Schonberg G, Hensens O, Hirshfield J, Hoogsteen K, Liesch J, Springer J. Mevinolin: a highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent. Proc Natl Acad Sci USA. 1980;77:3957–3961. doi: 10.1073/pnas.77.7.3957. - DOI - PMC - PubMed
-
- Ames BD, Nguyen C, Bruegger J, Smith P, Xu W, Ma S, Wong E, Wong S, Xie X, Li JW-H, Vederas JC, Tang Y, Tsai S-C. Crystal structure and biochemical studies of the trans-acting polyketide enoyl reductase LovC from lovastatin biosynthesis. Proc Natl Acad Sci. 2012;109(28):11144–11149. doi: 10.1073/pnas.1113029109. - DOI - PMC - PubMed
-
- Askenazi M, Driggers EM, Holtzman DA, Norman TC, Iverson S, Zimmer DP, Boers M-E, Blomquist PR, Martinez EJ, Monreal AW, Feibelman TP, Mayorga ME, Maxon ME, Sykes K, Tobin JV, Cordero E, Salama SR, Trueheart J, Royer JC, Madden KT. Integrating transcriptional and metabolite profiles to direct the engineering of lovastatin-producing fungal strains. Nat Biotechnol. 2003;21:150–156. doi: 10.1038/nbt781. - DOI - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources