Human-Specific Cortical Synaptic Connections and Their Plasticity: Is That What Makes Us Human?
- PMID: 28103228
- PMCID: PMC5245906
- DOI: 10.1371/journal.pbio.2001378
Human-Specific Cortical Synaptic Connections and Their Plasticity: Is That What Makes Us Human?
Abstract
One outstanding difference between Homo sapiens and other mammals is the ability to perform highly complex cognitive tasks and behaviors, such as language, abstract thinking, and cultural diversity. How is this accomplished? According to one prominent theory, cognitive complexity is proportional to the repetition of specific computational modules over a large surface expansion of the cerebral cortex (neocortex). However, the human neocortex was shown to also possess unique features at the cellular and synaptic levels, raising the possibility that expanding the computational module is not the only mechanism underlying complex thinking. In a study published in PLOS Biology, Szegedi and colleagues analyzed a specific cortical circuit from live postoperative human tissue, showing that human-specific, very powerful excitatory connections between principal pyramidal neurons and inhibitory neurons are highly plastic. This suggests that exclusive plasticity of specific microcircuits might be considered among the mechanisms endowing the human neocortex with the ability to perform highly complex cognitive tasks.
Conflict of interest statement
The authors have declared that no competing interests exist.
Figures
Comment on
-
Plasticity in Single Axon Glutamatergic Connection to GABAergic Interneurons Regulates Complex Events in the Human Neocortex.PLoS Biol. 2016 Nov 9;14(11):e2000237. doi: 10.1371/journal.pbio.2000237. eCollection 2016 Nov. PLoS Biol. 2016. PMID: 27828957 Free PMC article.
References
-
- Douglas R, Markram H, Martin K. Neocortex In: Shepherd G, editors. The Synaptic Organization of the Brain. Oxford University Press; 2004. pp. 499–558.
-
- Mountcastle VB. The columnar organization of the neocortex. Brain. 1997;120 (Pt 4): 701–722. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
