Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Dec;12(6):4887-4890.
doi: 10.3892/ol.2016.5302. Epub 2016 Oct 21.

Mitochondria targeting nano agents in cancer therapeutics

Affiliations

Mitochondria targeting nano agents in cancer therapeutics

Xiao-Ying Zhang et al. Oncol Lett. 2016 Dec.

Retraction in

Abstract

Mitochondria have emerged as noteworthy therapeutic targets as their physiological functions are often altered in pathological conditions such as cancer. The electronic databases of MEDLINE, EMBASE and PubMed were searched for recent studies reporting the importance of mitochondria targeting nanoagents in cancer therapeutics. The concluding remarks of the above papers mostly confirmed the growing potential of these novel nanoagents in the area of anticancer research. Furthermore, numerous studies demonstrated the immense potential of nanocarriers in delivering mitochondria-acting compounds to their target site. Among the assemblage of nanomaterials, carbon nanotubes (CNTs) are becoming more prominent for drug delivery due to favorable attributes including their unique shape, which promotes cellular uptake, and large aspect ratio that facilitates conjugation of bioactive molecules on their surface. The present review focused on the current view of variable options available in mitochondria-targeting anticancer therapeutics. It may be concluded that improvements are essential for its establishment as a gold standard therapeutic option especially in the clinical setting.

Keywords: cancer; mitochondria; nanomedicine.

PubMed Disclaimer

References

    1. Xiong H, Du S, Ni J, Zhou J, Yao J. Mitochondria and nuclei dual-targeted heterogeneous hydroxyapatite nanoparticles for enhancing therapeutic efficacy of doxorubicin. Biomaterials. 2016;94:70–83. doi: 10.1016/j.biomaterials.2016.04.004. - DOI - PubMed
    1. Chen H, Chan DC. Mitochondrial dynamics - fusion, fission, movement, and mitophagy - in neurodegenerative diseases. Hum Mol Genet. 2009;18(R2):R169–R176. doi: 10.1093/hmg/ddp326. - DOI - PMC - PubMed
    1. Schapira AH. Mitochondrial diseases. Lancet. 2012;379:1825–1834. doi: 10.1016/S0140-6736(11)61305-6. - DOI - PubMed
    1. Fulda S, Galluzzi L, Kroemer G. Targeting mitochondria for cancer therapy. Nat Rev Drug Discov. 2010;9:447–464. doi: 10.1038/nrd3137. - DOI - PubMed
    1. Wallace DC. Mitochondria and cancer. Nat Rev Cancer. 2012;12:685–698. doi: 10.1038/nrc3365. - DOI - PMC - PubMed

Publication types