Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Apr 15;77(8):1892-1904.
doi: 10.1158/0008-5472.CAN-16-1839. Epub 2017 Jan 20.

Differential PI3Kδ Signaling in CD4+ T-cell Subsets Enables Selective Targeting of T Regulatory Cells to Enhance Cancer Immunotherapy

Affiliations

Differential PI3Kδ Signaling in CD4+ T-cell Subsets Enables Selective Targeting of T Regulatory Cells to Enhance Cancer Immunotherapy

Shamim Ahmad et al. Cancer Res. .

Abstract

To modulate T-cell function for cancer therapy, one challenge is to selectively attenuate regulatory but not conventional CD4+ T-cell subsets [regulatory T cell (Treg) and conventional T cell (Tconv)]. In this study, we show how a functional dichotomy in Class IA PI3K isoforms in these two subsets of CD4+ T cells can be exploited to target Treg while leaving Tconv intact. Studies employing isoform-specific PI3K inhibitors and a PI3Kδ-deficient mouse strain revealed that PI3Kα and PI3Kβ were functionally redundant with PI3Kδ in Tconv. Conversely, PI3Kδ was functionally critical in Treg, acting there to control T-cell receptor signaling, cell proliferation, and survival. Notably, in a murine model of lung cancer, coadministration of a PI3Kδ-specific inhibitor with a tumor-specific vaccine decreased numbers of suppressive Treg and increased numbers of vaccine-induced CD8 T cells within the tumor microenvironment, eliciting potent antitumor efficacy. Overall, our results offer a mechanistic rationale to employ PI3Kδ inhibitors to selectively target Treg and improve cancer immunotherapy. Cancer Res; 77(8); 1892-904. ©2017 AACR.

PubMed Disclaimer

MeSH terms