Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Feb 8;117(3):1765-1795.
doi: 10.1021/acs.chemrev.6b00480. Epub 2017 Jan 23.

Negative Ions in Space

Affiliations
Free article

Negative Ions in Space

Thomas J Millar et al. Chem Rev. .
Free article

Abstract

Until a decade ago, the only anion observed to play a prominent role in astrophysics was H-. The bound-free transitions in H- dominate the visible opacity in stars with photospheric temperatures less than 7000 K, including the Sun. The H- anion is also believed to have been critical to the formation of molecular hydrogen in the very early evolution of the Universe. Once H2 formed, about 500 000 years after the Big Bang, the expanding gas was able to lose internal gravitational energy and collapse to form stellar objects and "protogalaxies", allowing the creation of heavier elements such as C, N, and O through nucleosynthesis. Although astronomers had considered some processes through which anions might form in interstellar clouds and circumstellar envelopes, including the important role that polycyclic aromatic hydrocarbons might play in this, it was the detection in 2006 of rotational line emission from C6H- that galvanized a systematic study of the abundance, distribution, and chemistry of anions in the interstellar medium. In 2007, the Cassini mission reported the unexpected detection of anions with mass-to-charge ratios of up to ∼10 000 in the upper atmosphere of Titan; this observation likewise instigated the study of fundamental chemical processes involving negative ions among planetary scientists. In this article, we review the observations of anions in interstellar clouds, circumstellar envelopes, Titan, and cometary comae. We then discuss a number of processes by which anions can be created and destroyed in these environments. The derivation of accurate rate coefficients for these processes is an essential input for the chemical kinetic modeling that is necessary to fully extract physics from the observational data. We discuss such models, along with their successes and failings, and finish with an outlook on the future.

PubMed Disclaimer

LinkOut - more resources