Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Mar;22(2):537-544.
doi: 10.1109/JBHI.2016.2639818. Epub 2016 Dec 14.

Machine Learning Approach for Predicting Wall Shear Distribution for Abdominal Aortic Aneurysm and Carotid Bifurcation Models

Machine Learning Approach for Predicting Wall Shear Distribution for Abdominal Aortic Aneurysm and Carotid Bifurcation Models

Milos Jordanski et al. IEEE J Biomed Health Inform. 2018 Mar.

Abstract

Computer simulations based on the finite element method represent powerful tools for modeling blood flow through arteries. However, due to its computational complexity, this approach may be inappropriate when results are needed quickly. In order to reduce computational time, in this paper, we proposed an alternative machine learning based approach for calculation of wall shear stress (WSS) distribution, which may play an important role in mechanisms related to initiation and development of atherosclerosis. In order to capture relationships between geometric parameters, blood density, dynamic viscosity and velocity, and WSS distribution of geometrically parameterized abdominal aortic aneurysm (AAA) and carotid bifurcation models, we proposed multivariate linear regression, multilayer perceptron neural network and Gaussian conditional random fields (GCRF). Results obtained in this paper show that machine learning approaches can successfully predict WSS distribution at different cardiac cycle time points. Even though all proposed methods showed high potential for WSS prediction, GCRF achieved the highest coefficient of determination (0.930-0.948 for AAA model and 0.946-0.954 for carotid bifurcation model) demonstrating benefits of accounting for spatial correlation. The proposed approach can be used as an alternative method for real time calculation of WSS distribution.

PubMed Disclaimer

Publication types

LinkOut - more resources