Land use as a driver of soil fertility and biodiversity across an agricultural landscape in the Central Peruvian Andes
- PMID: 28117908
- DOI: 10.1002/eap.1508
Land use as a driver of soil fertility and biodiversity across an agricultural landscape in the Central Peruvian Andes
Abstract
Land use change and intensification in agricultural landscapes of the Andean highlands have resulted in widespread soil degradation and a loss in soil-based ecosystem services and biodiversity. This trend threatens the sustainability of farming communities in the Andes, with important implications for food security and biodiversity conservation throughout the region. Based on these challenges, we sought to understand the impact of current and future land use practices on soil fertility and biodiversity, so as to inform landscape planning and management decisions for sustainable agroecosystem management. We worked with local communities to identify and map dominant land uses in an agricultural landscape surrounding Quilcas, Peru. These land uses existed within two elevations zones (low-medium, 3200-3800 m, and high elevation, 3800-4300 m). They included three types of low-medium elevation forests (eucalyptus, alder, and mixed/native species), five pasture management types (permanent pasture, temporal pasture [in fallow stage], degraded pasture, high-altitude permanent pasture, and high-altitude temporal pasture [in fallow stage]) and six cropping systems (forage crops, maize/beans, and potato under four types of management). Soil fertility was evaluated in surface soils (0-20 cm) with soil physicochemical parameters (e.g., pH, soil organic matter, available nutrients, texture), while soil biological properties were assessed using the abundance and diversity of soil macrofauna and ground cover vegetation. Our results indicated clear impacts of land use on soil fertility and biological communities. Altitude demonstrated the strongest effect on soil physicochemical properties, but management systems within the low-mid elevation zone also showed important differences in soil biological communities. In general, the less-disturbed forest and pasture systems supported more diverse soil communities than the more intensively managed croplands. Degraded soils demonstrated the lowest overall soil fertility and abundance of soil macrofauna, but this may be reversible via the planting of alder forests. Our findings also indicated significant covariation between soil physicochemical parameters, soil macrofauna, and ground vegetation. This suggests that management for any one of these soil properties may yield unintended cascading effects throughout the soil subsystem. In summary, our findings suggest that shifts in land use across the landscape are likely to have important impacts on soil functioning and biodiversity.
Keywords: Andean forest; cropping systems; land use intensification; pasture; soil biology; soil degradation; soil macrofauna; vegetation.
© 2017 by the Ecological Society of America.
Similar articles
-
Cropping history trumps fallow duration in long-term soil and vegetation dynamics of shifting cultivation systems.Ecol Appl. 2017 Mar;27(2):519-531. doi: 10.1002/eap.1462. Epub 2017 Feb 21. Ecol Appl. 2017. PMID: 27770604
-
Loss of soil (macro)fauna due to the expansion of Brazilian sugarcane acreage.Sci Total Environ. 2016 Sep 1;563-564:160-8. doi: 10.1016/j.scitotenv.2016.04.116. Epub 2016 Apr 30. Sci Total Environ. 2016. PMID: 27135579
-
Pasture intensification is insufficient to relieve pressure on conservation priority areas in open agricultural markets.Glob Chang Biol. 2018 Jul;24(7):3199-3213. doi: 10.1111/gcb.14272. Epub 2018 May 4. Glob Chang Biol. 2018. PMID: 29665157
-
Liming impacts on soils, crops and biodiversity in the UK: A review.Sci Total Environ. 2018 Jan 1;610-611:316-332. doi: 10.1016/j.scitotenv.2017.08.020. Epub 2017 Aug 11. Sci Total Environ. 2018. PMID: 28806549 Review.
-
The role of land-use history in driving successional pathways and its implications for the restoration of tropical forests.Biol Rev Camb Philos Soc. 2021 Aug;96(4):1114-1134. doi: 10.1111/brv.12694. Epub 2021 Mar 12. Biol Rev Camb Philos Soc. 2021. PMID: 33709566 Free PMC article. Review.
Cited by
-
Improved Pastures Support Early Indicators of Soil Restoration in Low-input Agroecosystems of Nicaragua.Environ Manage. 2019 Aug;64(2):201-212. doi: 10.1007/s00267-019-01181-8. Epub 2019 Jun 18. Environ Manage. 2019. PMID: 31214771
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources