Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jan 24;14(1):e1002220.
doi: 10.1371/journal.pmed.1002220. eCollection 2017 Jan.

The World Health Organization Fetal Growth Charts: A Multinational Longitudinal Study of Ultrasound Biometric Measurements and Estimated Fetal Weight

Affiliations

The World Health Organization Fetal Growth Charts: A Multinational Longitudinal Study of Ultrasound Biometric Measurements and Estimated Fetal Weight

Torvid Kiserud et al. PLoS Med. .

Erratum in

Abstract

Background: Perinatal mortality and morbidity continue to be major global health challenges strongly associated with prematurity and reduced fetal growth, an issue of further interest given the mounting evidence that fetal growth in general is linked to degrees of risk of common noncommunicable diseases in adulthood. Against this background, WHO made it a high priority to provide the present fetal growth charts for estimated fetal weight (EFW) and common ultrasound biometric measurements intended for worldwide use.

Methods and findings: We conducted a multinational prospective observational longitudinal study of fetal growth in low-risk singleton pregnancies of women of high or middle socioeconomic status and without known environmental constraints on fetal growth. Centers in ten countries (Argentina, Brazil, Democratic Republic of the Congo, Denmark, Egypt, France, Germany, India, Norway, and Thailand) recruited participants who had reliable information on last menstrual period and gestational age confirmed by crown-rump length measured at 8-13 wk of gestation. Participants had anthropometric and nutritional assessments and seven scheduled ultrasound examinations during pregnancy. Fifty-two participants withdrew consent, and 1,387 participated in the study. At study entry, median maternal age was 28 y (interquartile range [IQR] 25-31), median height was 162 cm (IQR 157-168), median weight was 61 kg (IQR 55-68), 58% of the women were nulliparous, and median daily caloric intake was 1,840 cal (IQR 1,487-2,222). The median pregnancy duration was 39 wk (IQR 38-40) although there were significant differences between countries, the largest difference being 12 d (95% CI 8-16). The median birthweight was 3,300 g (IQR 2,980-3,615). There were differences in birthweight between countries, e.g., India had significantly smaller neonates than the other countries, even after adjusting for gestational age. Thirty-one women had a miscarriage, and three fetuses had intrauterine death. The 8,203 sets of ultrasound measurements were scrutinized for outliers and leverage points, and those measurements taken at 14 to 40 wk were selected for analysis. A total of 7,924 sets of ultrasound measurements were analyzed by quantile regression to establish longitudinal reference intervals for fetal head circumference, biparietal diameter, humerus length, abdominal circumference, femur length and its ratio with head circumference and with biparietal diameter, and EFW. There was asymmetric distribution of growth of EFW: a slightly wider distribution among the lower percentiles during early weeks shifted to a notably expanded distribution of the higher percentiles in late pregnancy. Male fetuses were larger than female fetuses as measured by EFW, but the disparity was smaller in the lower quantiles of the distribution (3.5%) and larger in the upper quantiles (4.5%). Maternal age and maternal height were associated with a positive effect on EFW, particularly in the lower tail of the distribution, of the order of 2% to 3% for each additional 10 y of age of the mother and 1% to 2% for each additional 10 cm of height. Maternal weight was associated with a small positive effect on EFW, especially in the higher tail of the distribution, of the order of 1.0% to 1.5% for each additional 10 kg of bodyweight of the mother. Parous women had heavier fetuses than nulliparous women, with the disparity being greater in the lower quantiles of the distribution, of the order of 1% to 1.5%, and diminishing in the upper quantiles. There were also significant differences in growth of EFW between countries. In spite of the multinational nature of the study, sample size is a limiting factor for generalization of the charts.

Conclusions: This study provides WHO fetal growth charts for EFW and common ultrasound biometric measurements, and shows variation between different parts of the world.

PubMed Disclaimer

Conflict of interest statement

I have read the journal's policy and the authors of this manuscript have the following competing interests: GP is a WHO statistical consultant and has a contract to give statistical support to the Fetal Growth Study. GP has worked with WHO for 15 years and has a relationship with WHO, both paid (contracts) and unpaid. GP is also a good friend of many of the investigators involved in this study. LDP is a Board Member of the Perinatal Quality Foundation, a nonprofit organization related to the Society for Maternal Fetal Medicine. LDP has received research support from General Electric Medical Systems unrelated to fetal growth. LDP also lectures 1 or 2 times per year at an educational meeting supported by General Electric Medical Systems unrelated to fetal growth.

Figures

Fig 1
Fig 1. Percentiles for biparietal (outer–inner) diameter, head circumference, abdominal circumference, femur length, humerus length, estimated fetal weight, femur length/head circumference ratio, and femur length/biparietal diameter ratio during gestational weeks 14–40.
The percentiles (percent) 1st, 5th, 10th, 50th, 90th, 95th, and 99th (smoothed lines) are based on quantile regression and are shown with the observed values (grey dots).
Fig 2
Fig 2. Female and male growth of estimated fetal weight during gestational weeks 14–40.
The difference in growth for female (F; red) and male (M; blue) fetuses is shown by the 5th, 50th, and 95th percentiles for EFW growth. The smoothed lines are based on quantile regression that includes data from all the participating countries.
Fig 3
Fig 3. Influence of country on estimated fetal weight.
The 10th, 50th, and 90th percentiles for estimated fetal weight in grams for the ten participating countries, with variation due to country becoming more obvious towards the end of gestation. Congo, Democratic Republic of the Congo.
Fig 4
Fig 4. Quantile–quantile plots comparing countries’ distributions with the global distribution of estimated fetal weight.
The 5th, 10th, 25th, 50th, 75th, 90th, and 95th percentiles (Q05, Q10, Q25, Q50, Q75, and Q90, respectively) for the distribution of each country are plotted versus the same percentiles of the global distribution (global Q05, global Q10, global Q25, global Q50, global Q75, global Q90, respectively). Congo, Democratic Republic of the Congo.
Fig 5
Fig 5. Country differences in estimated fetal weight.
Selected percentiles for estimated fetal weight (EFW) for the ten participating countries, showing the magnitude of differences (red, 5th percentile; blue, 50th percentile; green, 95th percentile; each dot denotes a country).

Comment in

References

    1. Department of Economic and Social Affairs of the United Nations Secretariat. The Millennium Development Goals report 2015. New York: United Nations; 2015.
    1. United Nations Foundation. Every Woman Every Child. 2016 [cited 2016 July 5]. Available from: http://www.everywomaneverychild.org/.
    1. World Health Organization. Global Health Observatory (GHO) data: neonatal mortality. Geneva: World Health Organization; 2016 [cited 2016 Dec 22]. Available from: http://www.who.int/gho/child_health/mortality/neonatal/en/.
    1. Lawn J, Cousens S, Zupan J, Lancet Neonatal Survival Steering Team. 4 million neonatal, deaths: when? Where? Why? Lancet. 2005;365(9462):891–900. 10.1016/S0140-6736(05)71048-5 - DOI - PubMed
    1. Katz J, Lee A, Kozuki N, Lawn J, Cousens S, Blencowe H, et al. Mortality risk in preterm and small-for-gestational-age infants in low-income and middle-income countries: a pooled country analysis. Lancet. 2013;382(9890):417–25. 10.1016/S0140-6736(13)60993-9 - DOI - PMC - PubMed

Publication types