Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Apr;104(2):319-333.
doi: 10.1111/mmi.13629. Epub 2017 Feb 6.

Pentapeptide-rich peptidoglycan at the Bacillus subtilis cell-division site

Affiliations

Pentapeptide-rich peptidoglycan at the Bacillus subtilis cell-division site

Danae Morales Angeles et al. Mol Microbiol. 2017 Apr.

Abstract

Peptidoglycan (PG), the major component of the bacterial cell wall, is one large macromolecule. To allow for the different curvatures of PG at cell poles and division sites, there must be local differences in PG architecture and eventually also chemistry. Here we report such local differences in the Gram-positive rod-shaped model organism Bacillus subtilis. Single-cell analysis after antibiotic treatment and labeling of the cell wall with a fluorescent analogue of vancomycin or the fluorescent D-amino acid analogue (FDAA) HCC-amino-D-alanine revealed that PG at the septum contains muropeptides with unprocessed stem peptides (pentapeptides). Whereas these pentapeptides are normally shortened after incorporation into PG, this activity is reduced at division sites indicating either a lower local degree of PG crosslinking or a difference in PG composition, which could be a topological marker for other proteins. The pentapeptides remain partially unprocessed after division when they form the new pole of a cell. The accumulation of unprocessed PG at the division site is not caused by the activity of the cell division specific penicillin-binding protein 2B. To our knowledge, this is the first indication of local differences in the chemical composition of PG in Gram-positive bacteria.

PubMed Disclaimer

Publication types