Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Feb;42(1):27-44.
doi: 10.1007/s00059-016-4523-4.

ECMO in cardiac arrest and cardiogenic shock

Affiliations
Review

ECMO in cardiac arrest and cardiogenic shock

L C Napp et al. Herz. 2017 Feb.

Abstract

Cardiogenic shock is an acute emergency, which is classically managed by medical support with inotropes or vasopressors and frequently requires invasive ventilation. However, both catecholamines and ventilation are associated with a worse prognosis, and many patients deteriorate despite all efforts. Mechanical circulatory support is increasingly considered to allow for recovery or to bridge until making a decision or definite treatment. Of all devices, extracorporeal membrane oxygenation (ECMO) is the most widely used. Here we review features and strategical considerations for the use of ECMO in cardiogenic shock and cardiac arrest.

Der kardiogene Schock ist ein akut lebensbedrohlicher Notfall, der klassischerweise medikamentös (u. a. Inotropika und ggf. Vasopressoren) behandelt wird und häufig eine invasive Beatmung erfordert. Katecholamine und Beatmung sind jedoch mit einer ungünstigen Prognose assoziiert, und viele Patienten sind mit konservativen Maßnahmen nicht zu stabilisieren. Mechanische Kreislaufunterstützung wird immer öfter herangezogen, um den Kreislauf zu stabilisieren, dem erkrankten Herzen Zeit zur Erholung zu verschaffen oder eine Überbrückung bis zur definitiven Therapie zu etablieren. Das aktuell weltweit am häufigsten eingesetzte System zur mechanischen Kreislaufunterstützung in diesem Zusammenhang ist die extrakorporale Membranoxygenierung (ECMO). In der vorliegenden Übersicht fassen die Autoren die speziellen Eigenschaften dieses Systems sowie strategische Überlegungen im Kontext des kardiogenen Schocks und des Herz-Kreislauf-Stillstands zusammen.

Keywords: Cardiac arrest; Cardiogenic shock; Cardiopulmonary resuscitation; ECMO; Extracorporeal resuscitation; Mechanical circulatory support; Microaxial pump; Sudden cardiac death.

PubMed Disclaimer

Conflict of interest statement

Compliance with ethical guidelinesConflict of interestL. C. Napp received travel support outside this work from Abbott, Abiomed, Bayer, Biotronik, Boston Scientific, Cordis, Lilly, Medtronic, Pfizer, Servier and Volcano, and lecture honoraria from Maquet. C. Kühn received lecture honoraria from Maquet and J. Bauersachs received lecture honoraria from Abiomed.This article does not contain any studies with human participants or animals performed by any of the authors.

Figures

Fig. 1
Fig. 1
Veno-arterial (VA) ECMO. VA-ECMO drains venous blood (blue) from the right atrium and returns an equal volume after reoxygenation and decarboxylation (red) to the iliac artery toward the aorta. Note the position of the draining venous cannula tip in the mid right atrium. Femoral arterial cannulation requires an extra sheath for antegrade perfusion of the leg (inset). (Modified from Napp & Bauersachs [49]; © L. C. Napp, J. Bauersachs 2016. This publication is an open access publication, available on intechopen.com)
Fig. 2
Fig. 2
Watershed phenomenon during VA-ECMO. Computed tomography. Antegrade blood flow (low contrast) from the heart competes with retrograde blood flow (high contrast) from the ECMO in the aorta, resulting in a watershed phenomenon (arrowhead). Here computed tomography of a patient with pulmonary embolism and reduced cardiac output demonstrates a rather proximal watershed, leading to perfusion of the right carotid artery with “heart blood” (dark) and the left carotid artery with “ECMO blood” (bright, arrows). Upper panel: sagittal oblique maximum intensity projection (MIP); middle panel: coronal oblique MIP; lower panel: transverse plane. (From Napp et al. [36]; © L. C. Napp, C. Kühn, M. M. Hoeper et al. 2015. This publication is an open access publication, available on springerlink.com)
Fig. 3
Fig. 3
Veno-arterial-venous (VAV) ECMO. VAV-ECMO drains venous blood (blue) from the right atrium and returns balanced volumes of blood after reoxygenation and decarboxylation (red) to the iliac artery toward the aorta and to the right atrium toward the pulmonary circulation. For this purpose, the ECMO outflow is divided by a Y-connector. Flow through the returning cannulae is balanced with an adjustable clamp and monitored with a separate flow sensor on the upper return cannula. (Modified from Napp & Bauersachs [49]; © L. C. Napp, J. Bauersachs 2016. This publication is an open access publication, available on intechopen.com)
Fig. 4
Fig. 4
VA-ECMO and active LV unloading by using an Impella® microaxial pump. In addition and in contrast to VA-ECMO, which delivers retrograde flow support to the aorta, the Impella® pump drains the LV and supplies the blood to the ascending aorta. This “unloads” the LV and facilitates myocardial recovery and pulmonary decongestion. (Modified from Napp & Bauersachs [49]; © L. C. Napp, J. Bauersachs 2016. This publication is an open access publication, available on intechopen.com)
Fig. 5
Fig. 5
Management of VA-ECMO for bridge-to-recovery in cardiogenic shock. Proposal of mechanical support strategies for patients with cardiogenic shock and prospect of cardiac recovery. LVEDP left ventricular end-diastolic pressure, RR arterial blood pressure, VAV-ECMO venoarteriovenous extracorporeal membrane oxygenation

References

    1. Gibbon JH., Jr. Artificial maintenance of circulation during experimental occlusion of pulmonary artery. Arch Surg. 1937;34:1105–1131. doi: 10.1001/archsurg.1937.01190120131008. - DOI
    1. Kennedy JH. The role of assisted circulation in cardiac resuscitation. JAMA. 1966;197:615–618. doi: 10.1001/jama.1966.03110080055017. - DOI - PubMed
    1. Gibbon JH., Jr. Application of a mechanical heart and lung apparatus to cardiac surgery. Minn Med. 1954;37:171–185. - PubMed
    1. Hill JD, O’Brien TG, Murray JJ, et al. Prolonged extracorporeal oxygenation for acute post-traumatic respiratory failure (shock-lung syndrome). Use of the Bramson membrane lung. N Engl J Med. 1972;286:629–634. doi: 10.1056/NEJM197203232861204. - DOI - PubMed
    1. Goldberg RJ, Spencer FA, Gore JM, et al. Thirty-year trends (1975 to 2005) in the magnitude of, management of, and hospital death rates associated with cardiogenic shock in patients with acute myocardial infarction: a population-based perspective. Circulation. 2009;119:1211–1219. doi: 10.1161/CIRCULATIONAHA.108.814947. - DOI - PMC - PubMed

MeSH terms

LinkOut - more resources