Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Mar;13(2):267-279.
doi: 10.1002/ieam.1885. Epub 2017 Jan 27.

Recommended approaches to the scientific evaluation of ecotoxicological hazards and risks of endocrine-active substances

Affiliations

Recommended approaches to the scientific evaluation of ecotoxicological hazards and risks of endocrine-active substances

Peter Matthiessen et al. Integr Environ Assess Manag. 2017 Mar.

Abstract

A SETAC Pellston Workshop® "Environmental Hazard and Risk Assessment Approaches for Endocrine-Active Substances (EHRA)" was held in February 2016 in Pensacola, Florida, USA. The primary objective of the workshop was to provide advice, based on current scientific understanding, to regulators and policy makers; the aim being to make considered, informed decisions on whether to select an ecotoxicological hazard- or a risk-based approach for regulating a given endocrine-disrupting substance (EDS) under review. The workshop additionally considered recent developments in the identification of EDS. Case studies were undertaken on 6 endocrine-active substances (EAS-not necessarily proven EDS, but substances known to interact directly with the endocrine system) that are representative of a range of perturbations of the endocrine system and considered to be data rich in relevant information at multiple biological levels of organization for 1 or more ecologically relevant taxa. The substances selected were 17α-ethinylestradiol, perchlorate, propiconazole, 17β-trenbolone, tributyltin, and vinclozolin. The 6 case studies were not comprehensive safety evaluations but provided foundations for clarifying key issues and procedures that should be considered when assessing the ecotoxicological hazards and risks of EAS and EDS. The workshop also highlighted areas of scientific uncertainty, and made specific recommendations for research and methods-development to resolve some of the identified issues. The present paper provides broad guidance for scientists in regulatory authorities, industry, and academia on issues likely to arise during the ecotoxicological hazard and risk assessment of EAS and EDS. The primary conclusion of this paper, and of the SETAC Pellston Workshop on which it is based, is that if data on environmental exposure, effects on sensitive species and life-stages, delayed effects, and effects at low concentrations are robust, initiating environmental risk assessment of EDS is scientifically sound and sufficiently reliable and protective of the environment. In the absence of such data, assessment on the basis of hazard is scientifically justified until such time as relevant new information is available. Integr Environ Assess Manag 2017;13:267-279. © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

Keywords: Ecotoxicological hazard assessment; Ecotoxicological risk assessment; Endocrine disruptors.

PubMed Disclaimer

Figures

Figure 1.
Figure 1.
A suggested decision-making strategy for assessing whether a scientifically sound risk assessment of an EDS can bereliably performed. *On exiting at Stop, consider whether a risk assessment of non-EDS hazards is required. This of course applies only if wildlife exposure is expected to occur. EDS = endocrine- disrupting substance.

Similar articles

Cited by

References

    1. Ankley GT, Bennett RS, Erickson RJ, Hoff DJ, Hornung MW, Johnson RD, Mount DR, Nichols JW, Russom CL, Schmieder PK, et al. 2010. Adverse outcome pathways: A conceptual framework to support ecotoxicology research and risk assessment. Environ Toxicol Chem 29:730–741. - PubMed
    1. Ankley GT, Gray LE. 2013. Cross-species conservation of endocrine pathways: A critical analysis of tier 1 fish and rat screening assays with 12 model chemicals. Environ Toxicol Chem 32:1084–1087. - PubMed
    1. Ankley GT, LaLone CA, Gray LE, Villeneuve DL, Hornung MW. 2016. Evaluation of the scientific underpinnings for identifying estrogenic chemicals in nonmammalian taxa using mammalian test systems. Environ Toxicol Chem 35(11):2806–2816. - PubMed
    1. Ankley GT, Villeneuve DL. 2015. Temporal changes in biological responses and uncertainty in assessing risks of endocrine-disrupting chemicals: Insights from intensive time-course studies with fish. Toxicol Sci 144: 259–275. - PubMed
    1. Becker RA, Ankley GT, Edwards SW, Kennedy SW, Linkov I, Meek B, Sachana M, Segner H, Van Der Burg B, Villeneuve DL, et al. 2015. Increasing scientific confidence in adverse outcome pathways: application of tailored Bradford-Hill considerations for evaluating weight of evidence. Regul Toxicol Pharmacol 72:514–537. - PubMed

MeSH terms

Substances

LinkOut - more resources