Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Aug;152(2):410-416.
doi: 10.1016/j.chest.2017.01.021. Epub 2017 Jan 24.

Hematopoietic Processes in Eosinophilic Asthma

Affiliations
Review

Hematopoietic Processes in Eosinophilic Asthma

Brittany M Salter et al. Chest. 2017 Aug.

Abstract

Airway eosinophilia is a hallmark of allergic asthma, and understanding mechanisms that promote increases in lung eosinophil numbers is important for effective pharmacotherapeutic development. It has become evident that expansion of hematopoietic compartments in the bone marrow (BM) promotes differentiation and trafficking of mature eosinophils to the airways. Hematopoietic progenitor cells egress the BM and home to the lungs, where in situ differentiation within the tissue provides an ongoing source of proinflammatory cells. In addition, hematopoietic progenitor cells in the airways can respond to locally derived alarmins to produce a panoply of cytokines, thereby themselves acting as effector proinflammatory cells that potentiate type 2 responses in eosinophilic asthma. In this review, we provide evidence for these findings and discuss novel targets for modulating eosinophilopoietic processes, migration, and effector function of precursor cells.

Keywords: airway inflammation; allergic asthma; asthma; bone marrow.

PubMed Disclaimer

MeSH terms