Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Mar 15:444:19-25.
doi: 10.1016/j.mce.2017.01.037. Epub 2017 Jan 24.

Diagnostic yield of targeted gene panel sequencing to identify the genetic etiology of disorders of sex development

Affiliations

Diagnostic yield of targeted gene panel sequencing to identify the genetic etiology of disorders of sex development

Ja Hye Kim et al. Mol Cell Endocrinol. .

Abstract

Disorders of sex development (DSD) vary phenotypically and are caused by a number of genetic etiologies. This study investigated the genetic etiology of DSD patients using targeted exome sequencing of 67 known DSD-associated genes in humans. This study included 37 patients with 46, XY DSD and seven patients with 46, XX DSD. We identified known pathogenic mutations or deletion in nine (20.5%) patients in the AR, CYP17A1, SRD5A1, and DMRT1/2 genes. Novel variants were identified in nine patients (20.5%) in the AR, ATRX, CYP17A1, CHD7, MAP3K1, NR5A1, and WWOX genes. Among them, four patients harbored pathogenic or likely pathogenic variants, while the remaining five patients (11.4%) had variants of uncertain significance. We were able to make a genetic diagnosis in 29.5% of patients with pathogenic or likely pathogenic mutations. Targeted exome sequencing is an efficient tool to improve the diagnostic yield of DSD, despite its phenotypic and genetic heterogeneity.

Keywords: Androgen receptor; CYP17A1; Disorders of sex development; Exome sequencing; SRD5A2.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources