Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 May:98:67-74.
doi: 10.1016/j.ijbiomac.2017.01.089. Epub 2017 Jan 24.

Nanoceramics on osteoblast proliferation and differentiation in bone tissue engineering

Affiliations
Review

Nanoceramics on osteoblast proliferation and differentiation in bone tissue engineering

Sai Nievethitha Sethu et al. Int J Biol Macromol. 2017 May.

Abstract

Bone, a highly dynamic connective tissue, consist of a bioorganic phase comprising osteogenic cells and proteins which lies over an inorganic phase predominantly made of CaPO4 (biological apatite). Injury to bone can be due to mechanical, metabolic or inflammatory agents also owing pathological conditions like fractures, osteomyelitis, osteolysis or cysts may arise in enameloid, chondroid, cementum, or chondroid bone which forms the intermediate tissues of the body. Bone tissue engineering (BTE) applies bioactive scaffolds, host cells and osteogenic signals for restoring damaged or diseased tissues. Various bioceramics used in BTE can be bioactive (like glass ceramics and hydroxyapatite bioactive glass), bioresorbable (like tricalcium phosphates) or bioinert (like zirconia and alumina). Limiting the size of these materials to nano-scale has resulted in a higher surface area to volume ratio thereby improving multi-functionality, solubility, surface catalytic activity, high heat and electrical conductivity. Nanoceramics have been found to induce osteoconduction, osteointegration, osteogenesis and osteoinduction. The present review aims at summarizing the interactions of nanoceramics and osteoblast/stem cells for promoting the proliferation and differentiation of the osteoblast cells by nanoceramics as superior bone substitutes in bone tissue engineering applications.

Keywords: Bioactive ceramics; Bone tissue engineering; Nanoceramics; Osteoblast.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources