The Dorsal Mesenchymal Protrusion and the Pathogenesis of Atrioventricular Septal Defects
- PMID: 28133602
- PMCID: PMC5267359
- DOI: 10.3390/jcdd3040029
The Dorsal Mesenchymal Protrusion and the Pathogenesis of Atrioventricular Septal Defects
Abstract
Congenital heart malformations are the most common type of defects found at birth. About 1% of infants are born with one or more heart defect on a yearly basis. Congenital Heart Disease (CHD) causes more deaths in the first year of life than any other congenital abnormality, and each year, nearly twice as many children die in the United States from CHD as from all forms of childhood cancers combined. Atrioventricular septal defects (AVSD) are congenital heart malformations affecting approximately 1 in 2000 live births. Babies born with an AVSD often require surgical intervention shortly after birth. However, even after successful surgery, these individuals typically have to deal with lifelong complications with the most common being a leaky mitral valve. In recent years the understanding of the molecular etiology and morphological mechanisms associated with the pathogenesis of AVSDs has significantly changed. Specifically, these studies have linked abnormal development of the Dorsal Mesenchymal Protrusion (DMP), a Second Heart Field-derived structure, to the development of this congenital defect. In this review we will be discuss some of the latest insights into the role of the DMP in the normal formation of the atrioventricular septal complex and in the pathogenesis of AVSDs.
Keywords: AVSD; DMP; atrioventricular septal defects; congenital heart defect; development; dorsal mesenchymal protrusion; etiology; pathogenesis.
Conflict of interest statement
The authors declare no conflict of interest.
Figures







Similar articles
-
The pathogenesis of atrial and atrioventricular septal defects with special emphasis on the role of the dorsal mesenchymal protrusion.Differentiation. 2012 Jul;84(1):117-30. doi: 10.1016/j.diff.2012.05.006. Epub 2012 Jun 17. Differentiation. 2012. PMID: 22709652 Free PMC article. Review.
-
Cardiovascular malformations among preterm infants.Pediatrics. 2005 Dec;116(6):e833-8. doi: 10.1542/peds.2005-0397. Pediatrics. 2005. PMID: 16322141
-
Sox9 Expression in the Second Heart Field; A Morphological Assessment of the Importance to Cardiac Development with Emphasis on Atrioventricular Septation.J Cardiovasc Dev Dis. 2022 Nov 2;9(11):376. doi: 10.3390/jcdd9110376. J Cardiovasc Dev Dis. 2022. PMID: 36354775 Free PMC article.
-
Clinical Presentation and Therapy of Atrioventricular Septal Defect.Adv Exp Med Biol. 2024;1441:553-558. doi: 10.1007/978-3-031-44087-8_29. Adv Exp Med Biol. 2024. PMID: 38884731
-
Atrioventricular Septal Defects: Pathology, Imaging, and Treatment Options.Curr Cardiol Rep. 2021 Jul 1;23(8):93. doi: 10.1007/s11886-021-01523-1. Curr Cardiol Rep. 2021. PMID: 34196822 Review.
Cited by
-
Pax9 and Gbx2 Interact in the Pharyngeal Endoderm to Control Cardiovascular Development.J Cardiovasc Dev Dis. 2020 May 25;7(2):20. doi: 10.3390/jcdd7020020. J Cardiovasc Dev Dis. 2020. PMID: 32466118 Free PMC article.
-
Myocardial TGFβ2 Is Required for Atrioventricular Cushion Remodeling and Myocardial Development.J Cardiovasc Dev Dis. 2021 Mar 2;8(3):26. doi: 10.3390/jcdd8030026. J Cardiovasc Dev Dis. 2021. PMID: 33801433 Free PMC article.
-
Brachyolmia, dental anomalies and short stature (DASS): Phenotype and genotype analyses of Egyptian and Pakistani patients.Heliyon. 2023 Dec 14;10(1):e23688. doi: 10.1016/j.heliyon.2023.e23688. eCollection 2024 Jan 15. Heliyon. 2023. PMID: 38192829 Free PMC article.
-
Follow Me! A Tale of Avian Heart Development with Comparisons to Mammal Heart Development.J Cardiovasc Dev Dis. 2020 Mar 7;7(1):8. doi: 10.3390/jcdd7010008. J Cardiovasc Dev Dis. 2020. PMID: 32156044 Free PMC article. Review.
-
The Mesenchymal Cap of the Atrial Septum and Atrial and Atrioventricular Septation.J Cardiovasc Dev Dis. 2020 Nov 4;7(4):50. doi: 10.3390/jcdd7040050. J Cardiovasc Dev Dis. 2020. PMID: 33158164 Free PMC article. Review.
References
-
- Parker S.E., Mai C.T., Canfield M.A., Rickard R., Wang Y., Meyer R.E., Anderson P., Mason C.A., Collins J.S., Kirby R.S., et al. Updated national birth prevalence estimates for selected birth defects in the united states, 2004–2006. Birth Defects Res. A Clin. Mol. Teratol. 2010;88:1008–1016. doi: 10.1002/bdra.20735. - DOI - PubMed
-
- Calkoen E.E., Hazekamp M.G., Blom N.A., Elders B.B., Gittenberger-de Groot A.C., Haak M.C., Bartelings M.M., Roest A.A., Jongbloed M.R. Atrioventricular septal defect: From embryonic development to long-term follow-up. Int. J. Cardiol. 2016;202:784–795. doi: 10.1016/j.ijcard.2015.09.081. - DOI - PubMed
-
- Smith K.A., Joziasse I.C., Chocron S., van Dinther M., Guryev V., Verhoeven M.C., Rehmann H., van der Smagt J.J., Doevendans P.A., Cuppen E., et al. Dominant-negative alk2 allele associates with congenital heart defects. Circulation. 2009;119:3062–3069. doi: 10.1161/CIRCULATIONAHA.108.843714. - DOI - PubMed
-
- D’Alessandro L.C., Al Turki S., Manickaraj A.K., Manase D., Mulder B.J., Bergin L., Rosenberg H.C., Mondal T., Gordon E., Lougheed J., et al. Exome sequencing identifies rare variants in multiple genes in atrioventricular septal defect. Genet. Med. 2016;18:189–198. doi: 10.1038/gim.2015.60. - DOI - PMC - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources