Discovery and functional prioritization of Parkinson's disease candidate genes from large-scale whole exome sequencing
- PMID: 28137300
- PMCID: PMC5282828
- DOI: 10.1186/s13059-017-1147-9
Discovery and functional prioritization of Parkinson's disease candidate genes from large-scale whole exome sequencing
Abstract
Background: Whole-exome sequencing (WES) has been successful in identifying genes that cause familial Parkinson's disease (PD). However, until now this approach has not been deployed to study large cohorts of unrelated participants. To discover rare PD susceptibility variants, we performed WES in 1148 unrelated cases and 503 control participants. Candidate genes were subsequently validated for functions relevant to PD based on parallel RNA-interference (RNAi) screens in human cell culture and Drosophila and C. elegans models.
Results: Assuming autosomal recessive inheritance, we identify 27 genes that have homozygous or compound heterozygous loss-of-function variants in PD cases. Definitive replication and confirmation of these findings were hindered by potential heterogeneity and by the rarity of the implicated alleles. We therefore looked for potential genetic interactions with established PD mechanisms. Following RNAi-mediated knockdown, 15 of the genes modulated mitochondrial dynamics in human neuronal cultures and four candidates enhanced α-synuclein-induced neurodegeneration in Drosophila. Based on complementary analyses in independent human datasets, five functionally validated genes-GPATCH2L, UHRF1BP1L, PTPRH, ARSB, and VPS13C-also showed evidence consistent with genetic replication.
Conclusions: By integrating human genetic and functional evidence, we identify several PD susceptibility gene candidates for further investigation. Our approach highlights a powerful experimental strategy with broad applicability for future studies of disorders with complex genetic etiologies.
Keywords: Animal model; Functional screening; Genomics; Loss-of-function; Mitochondria; Parkin; Parkinson’s disease; Rare variants; Whole-exome sequencing; α-synuclein.
Figures





References
Publication types
MeSH terms
Substances
Grants and funding
- J-0804/PUK_/Parkinson's UK/United Kingdom
- Z01 AG000957/ImNIH/Intramural NIH HHS/United States
- G0802462/MRC_/Medical Research Council/United Kingdom
- Z01 AG000949/ImNIH/Intramural NIH HHS/United States
- R01 CA141668/CA/NCI NIH HHS/United States
- G1100643/MRC_/Medical Research Council/United Kingdom
- Z01 ES101986/ImNIH/Intramural NIH HHS/United States
- C06 RR029965/RR/NCRR NIH HHS/United States
- K-1501/PUK_/Parkinson's UK/United Kingdom
- J-0901/PUK_/Parkinson's UK/United Kingdom
- R01 NS037167/NS/NINDS NIH HHS/United States
- R21 NS089854/NS/NINDS NIH HHS/United States
- G0700943/MRC_/Medical Research Council/United Kingdom
- K08 AG034290/AG/NIA NIH HHS/United States
- MR/K01417X/1/MRC_/Medical Research Council/United Kingdom
- G-0907/PUK_/Parkinson's UK/United Kingdom
- G0701075/MRC_/Medical Research Council/United Kingdom
- R01 AG050631/AG/NIA NIH HHS/United States
- P30 CA125123/CA/NCI NIH HHS/United States
- R01 AG033193/AG/NIA NIH HHS/United States
- F-1201/PUK_/Parkinson's UK/United Kingdom
- U01 AG046161/AG/NIA NIH HHS/United States
- WT_/Wellcome Trust/United Kingdom
- MR/N008324/1/MRC_/Medical Research Council/United Kingdom
- P50 NS071674/NS/NINDS NIH HHS/United States
- R01 GM084947/GM/NIGMS NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources