Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016;7(12):6934-6939.
doi: 10.1039/C6SC02231F. Epub 2016 Jul 28.

Intramolecular 1,5-C(sp3)-H Radical Amination via Co(II)-Based Metalloradical Catalysis for Five-Membered Cyclic Sulfamides

Affiliations

Intramolecular 1,5-C(sp3)-H Radical Amination via Co(II)-Based Metalloradical Catalysis for Five-Membered Cyclic Sulfamides

Hongjian Lu et al. Chem Sci. 2016.

Abstract

Co(II)-based metalloradical catalysis (MRC) proves effective for intramolecular 1,5-C-H amination of sulfamoyl azides under neutral and nonoxidative conditions, providing a straightforward approach to access strained 5-membered cyclic sulfamides with nitrogen gas as the only byproduct. The metalloradical amination system is applicable to different types of C(sp3)-H bonds and has a high degree of functional group tolerance. Additional features of the Co(II)-catalyzed 1,5-C-H amination include excellent chemoselectivity toward allylic and propargylic C-H bonds. The unique reactivity and selectivity profile of the Co(II)-catalyzed 1,5-C-H amination is attributed to the underlying radical mechanism of MRC.

PubMed Disclaimer

Figures

Scheme 1
Scheme 1. Metalloradical approach for 5-membered cyclic sulfamides via radical C(sp3)–H amination.
Fig. 1
Fig. 1. Selected examples of biologically active molecules containing the 5-membered cyclic sulfamide motif.
Scheme 2
Scheme 2. Ligand effect on Co(ii)-catalyzed 1,5-C(sp3)–H metalloradical amination.
Scheme 3
Scheme 3. Late-stage functionalization of complex molecules by Co(ii)- based 1,5-C–H radical aminationa. (a) Isolated yields. (b) On 0.5 mmol scale.
Fig. 2
Fig. 2. (A) Comparison of geometric parameters between acyclic and cyclic sulfamides based on X-ray structures. (B) Geometries of proposed transitional states for stepwise (left) and concerted (right) processes of intramolecular 1,5-C(sp3)–H amination.

Similar articles

Cited by

References

    1. For recent reviews, see:

    2. Quiclet-Sire B., Zard S. Z. Pure Appl. Chem. 2011;83:519–551.
    3. Narayanam J. M. R., Stephenson C. R. J. Chem. Soc. Rev. 2011;40:102–113. - PubMed
    4. Prier C. K., Rankic D. A., MacMillan D. W. C. Chem. Rev. 2013;113:5322–5363. - PMC - PubMed
    1. For selected recent examples, see:

    2. Du J., Skubi K. L., Schultz D. M., Yoon T. P. Science. 2014;344:392–396. - PMC - PubMed
    3. Hoyt J. M., Schmidt V. A., Tondreau A. M., Chirik P. J. Science. 2015;349:960–963. - PubMed
    4. Jeffrey J. L., Terrett J. A., MacMillan D. W. C. Science. 2015;349:1532–1536. - PMC - PubMed
    5. Kainz Q. M., Matier C. D., Bartoszewicz A., Zultanski S. L., Peters J. C., Fu G. C. Science. 2016;351:681–684. - PMC - PubMed
    1. For reviews on applications of Co(ii)-based MRC, see:

    2. Fantauzzi S., Caselli A., Gallo E. Dalton Trans. 2009:5434–5443. - PubMed
    3. Driver T. G. Org. Biomol. Chem. 2010;8:3831–3846. - PMC - PubMed
    4. Lu H., Zhang X. P. Chem. Soc. Rev. 2011;40:1899–1909. - PubMed
    5. Che C. M., Lo V. K. Y., Zhou C. Y., Huang J. S. Chem. Soc. Rev. 2011;40:1950–1975. - PubMed
    6. Pellissier H., Clavier H. Chem. Rev. 2014;114:2775–2823. - PubMed
    1. For a recent review on Ti(iii)-based MRC, see: . For the first demonstration of Ti(iii)-based metalloradical non-catalytic process, see: . For select examples of catalytic processes via Ti(III)-based MRC, see:

    2. Gansäuer A., Hildebrandt S., Vogelsang E., Flowers II R. A. Dalton Trans. 2016;45:448–452. - PubMed
    3. Nugent W. A., RajanBabu T. V. J. Am. Chem. Soc. 1988;110:8561–8562.
    4. Gansäuer A., Rinker B., Pierobon M., Grimme S., Gerenkamp M., Mück-Lichtenfeld C. Angew. Chem., Int. Ed. 2003;42:3687–3690. - PubMed
    5. Gansäuer A., Fan C.-A., Keller F., Keil J. J. Am. Chem. Soc. 2007;129:3484–3485. - PubMed
    6. Gansäuer A., Fleckhaus A., Lafont M. A., Okkel A., Kotsis K., Anoop A., Neese F. J. Am. Chem. Soc. 2009;131:16989–16999. - PubMed
    7. Gansäuer A., Hildebrandt S., Michelmann A., Dahmen T., von Laufenberg D., Kube C., Fianu G. D., Flowers II R. A. Angew. Chem., Int. Ed. 2015;54:7003–7006. - PubMed
    1. For detailed studies on the radical mechanism of [Co(Por)]-catalyzed C–H amination, including EPR observation of α-Co(iii)-aminyl radical intermediates (also known as Co(iii)-nitrene radicals), see: . For related DFT studies on the radical mechanism of [Co(Por)]-catalyzed olefin aziridination and the ligand hydrogen-bonding effect, see: ; for detailed studies on a similar radical mechanism involving α-Co(iii)-alkyl radical intermediates (also known as Co(iii)-carbene radicals), see:

    2. Lyaskovskyy V., Olivos Suarez A. I., Lu H., Jiang H., Zhang X. P., de Bruin B. J. Am. Chem. Soc. 2011;133:12264–12273. - PubMed
    3. Olivos Suarez A. I., Jiang H., Zhang X. P., de Bruin B. Dalton Trans. 2011;40:5697–5705. - PubMed
    4. Hopmann K. H., Ghosh A. ACS Catal. 2011;1:597–600.
    5. Dzik W. I., Xu X., Zhang X. P., Reek J. N. H., de Bruin B. J. Am. Chem. Soc. 2010;132:10891–10902. - PubMed
    6. Belof J. L., Cioce C. R., Xu X., Zhang X. P., Space B., Woodcock H. L. Organometallics. 2011;30:2739–2746. - PMC - PubMed
    7. Lu H., Dzik W. I., Xu X., Wojtas L., de Bruin B., Zhang X. P. J. Am. Chem. Soc. 2011;133:8518–8521. - PubMed

LinkOut - more resources