Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Feb 1;18(1):29.
doi: 10.1186/s12931-017-0511-3.

Changes in the respiratory microbiome during acute exacerbations of idiopathic pulmonary fibrosis

Affiliations

Changes in the respiratory microbiome during acute exacerbations of idiopathic pulmonary fibrosis

Philip L Molyneaux et al. Respir Res. .

Abstract

Acute exacerbations of idiopathic pulmonary fibrosis (AE-IPF) have been defined as events of clinically significant respiratory deterioration with an unidentifiable cause. They carry a significant mortality and morbidity and while their exact pathogenesis remains unclear, the possibility remains that hidden infection may play a role. The aim of this pilot study was to determine whether changes in the respiratory microbiota occur during an AE-IPF. Bacterial DNA was extracted from bronchoalveolar lavage from patients with stable IPF and those experiencing an AE-IPF. A hyper-variable region of the 16S ribosomal RNA gene (16S rRNA) was amplified, quantified and pyrosequenced. Culture independent techniques demonstrate AE-IPF is associated with an increased BAL bacterial burden compared to stable disease and highlight shifts in the composition of the respiratory microbiota during an AE-IPF.

Keywords: 16S; Acute exacerbation; Bacterial infection; Idiopathic pulmonary fibrosis.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Bacterial load in acute exacerbation of IPF compared with stable disease
Fig. 2
Fig. 2
Changes in specific bacterial species in acute exacerbations of IPF compared with stable disease

References

    1. Collard HR, Ryerson CJ, Corte TJ, Jenkins G, Kondoh Y, Lederer DJ, Lee JS, Maher TM, Wells AU, Antoniou KM, Behr J, Brown KK, Cottin V, Flaherty KR, Fukuoka J, Hansell DM, Johkoh T, Kaminski N, Kim DS, Kolb M, Lynch DA, Myers JL, Raghu G, Richeldi L, Taniguchi H, Martinez FJ. Acute exacerbation of idiopathic pulmonary fibrosis. An international working group report. Am J Respir Crit Care Med. 2016;194:265–75. doi: 10.1164/rccm.201604-0801CI. - DOI - PubMed
    1. Collard HR, Moore BB, Flaherty KR, Brown KK, Kaner RJ, King TE, Lasky JA, Loyd JE, Noth I, Olman MA, Raghu G, Roman J, Ryu JH, Zisman DA, Hunninghake GW, Colby TV, Egan JJ, Hansell DM, Johkoh T, Kaminski N, Kim DS, Kondoh Y, Lynch D a, Müller-Quernheim J, Myers JL, Nicholson AG, Selman MMM, Toews GB, Wells AU, Martinez FJ, et al. Acute exacerbations of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2007;176:636–43. doi: 10.1164/rccm.200703-463PP. - DOI - PMC - PubMed
    1. Maher TM. The diagnosis of idiopathic pulmonary fibrosis and its complications. Expert Opin Med Diagn. 2008;2:1317–31. doi: 10.1517/17530050802549484. - DOI - PubMed
    1. Song JW, Hong S-B, Lim C-M, Koh Y, Kim DS. Acute exacerbation of idiopathic pulmonary fibrosis: incidence, risk factors and outcome. Eur Respir J. 2011;37:356–63. doi: 10.1183/09031936.00159709. - DOI - PubMed
    1. Raghu G, Anstrom KJ, King TE, Lasky JA, Martinez FJ. Prednisone, azathioprine, and N-acetylcysteine for pulmonary fibrosis. N Engl J Med. 2012;366:1968–77. doi: 10.1056/NEJMoa1113354. - DOI - PMC - PubMed

Publication types