Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Sep 20:258:190-196.
doi: 10.1016/j.jbiotec.2017.01.006. Epub 2017 Jan 28.

Functional expression of plant-derived O-methyltransferase, flavanone 3-hydroxylase, and flavonol synthase in Corynebacterium glutamicum for production of pterostilbene, kaempferol, and quercetin

Affiliations

Functional expression of plant-derived O-methyltransferase, flavanone 3-hydroxylase, and flavonol synthase in Corynebacterium glutamicum for production of pterostilbene, kaempferol, and quercetin

Nicolai Kallscheuer et al. J Biotechnol. .

Abstract

Plant polyphenols receive significant attention due to their anti-oxidative and health-promoting properties, and several microorganisms are currently engineered towards producing these valuable compounds. Previously, Corynebacterium glutamicum has been engineered for synthesizing polyphenol core structures such as the stilbene resveratrol and the (2S)-flavanone naringenin. Decoration of these compounds by O-methylation or hydroxylation would provide access to polyphenols of even higher commercial interest. In this study, introduction of a heterologous O-methyltransferase into a resveratrol-producing C. glutamicum strain allowed synthesis of 42mg/L (0.16mM) of the di-O-methylated pterostilbene from p-coumaric acid. A prerequisite for reaching this product titer was a fusion of O-methyltransferase with the maltose-binding protein of Escherichia coli lacking its signal peptide, thereby increasing the solubility of the O-methyltransferase. Furthermore, expression of heterologous dioxygenase genes in (2S)-flavanone-producing C. glutamicum strains enabled the production of flavanonols and flavonols starting from the phenylpropanoids p-coumaric acid and caffeic acid. For the flavonols kaempferol and quercetin, maximum product titers of 23mg/L (0.08mM) and 10mg/L (0.03mM) could be achieved, respectively. The obtained results demonstrate that C. glutamicum is a suitable host organism for the production of more complex plant polyphenols.

Keywords: Corynebacterium glutamicum; Flavonols; Kaempferol; Pterostilbene; Quercetin; Resveratrol.

PubMed Disclaimer

MeSH terms

LinkOut - more resources