Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Feb 27;57(2):288-297.
doi: 10.1021/acs.jcim.6b00692. Epub 2017 Feb 9.

Dynamic Perturbation of the Active Site Determines Reversible Thermal Inactivation in Glycoside Hydrolase Family 12

Affiliations

Dynamic Perturbation of the Active Site Determines Reversible Thermal Inactivation in Glycoside Hydrolase Family 12

Xukai Jiang et al. J Chem Inf Model. .

Abstract

The temperature dependence of enzyme catalysis is highly debated. Specifically, how high temperatures induce enzyme inactivation has broad implications for both fundamental and applied science. Here, we explored the mechanism of the reversible thermal inactivation in glycoside hydrolase family 12 (GH12) using comparative molecular dynamics simulations. First, we investigated the distribution of structural flexibility over the enzyme and found that the active site was the general thermal-sensitive region in GH12 cellulases. The dynamic perturbation of the active site before enzyme denaturation was explored through principal-component analysis, which indicated that variations in the collective motion and conformational ensemble of the active site may precisely correspond to enzyme transition from its active form to the inactive form. Furthermore, the degree of dynamic perturbation of the active site was found to be negatively correlated with the melting temperatures of GH12 enzymes, further proving the importance of the dynamic stability of the active site. Additionally, analysis of the residue-interaction network revealed that the active site in thermophilic enzyme was capable of forming additional contacts with other amino acids than those observed in the mesophilic enzyme. These interactions are likely the key mechanisms underlying the differences in rigidity of the active site. These findings provide further biophysical insights into the reversible thermal inactivation of enzymes and potential applications in future protein engineering.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources