Mapping Biological Networks from Quantitative Data-Independent Acquisition Mass Spectrometry: Data to Knowledge Pipelines
- PMID: 28150249
- PMCID: PMC6844627
- DOI: 10.1007/978-1-4939-6783-4_19
Mapping Biological Networks from Quantitative Data-Independent Acquisition Mass Spectrometry: Data to Knowledge Pipelines
Abstract
Data-independent acquisition mass spectrometry (DIA-MS) strategies and applications provide unique advantages for qualitative and quantitative proteome probing of a biological sample allowing constant sensitivity and reproducibility across large sample sets. These advantages in LC-MS/MS are being realized in fundamental research laboratories and for clinical research applications. However, the ability to translate high-throughput raw LC-MS/MS proteomic data into biological knowledge is a complex and difficult task requiring the use of many algorithms and tools for which there is no widely accepted standard and best practices are slowly being implemented. Today a single tool or approach inherently fails to capture the full interpretation that proteomics uniquely supplies, including the dynamics of quickly reversible chemically modified states of proteins, irreversible amino acid modifications, signaling truncation events, and, finally, determining the presence of protein from allele-specific transcripts. This chapter highlights key steps and publicly available algorithms required to translate DIA-MS data into knowledge.
Keywords: Citrullination; Data-independent acquisition; Phosphorylation; Post-translational modifications; Protein networks; SWATH.
Figures







Similar articles
-
Computational and Statistical Methods for High-Throughput Mass Spectrometry-Based PTM Analysis.Methods Mol Biol. 2017;1558:437-458. doi: 10.1007/978-1-4939-6783-4_21. Methods Mol Biol. 2017. PMID: 28150251
-
Network Tools for the Analysis of Proteomic Data.Methods Mol Biol. 2017;1549:177-197. doi: 10.1007/978-1-4939-6740-7_14. Methods Mol Biol. 2017. PMID: 27975292
-
Bioinformatics Methods to Deduce Biological Interpretation from Proteomics Data.Methods Mol Biol. 2017;1549:147-161. doi: 10.1007/978-1-4939-6740-7_12. Methods Mol Biol. 2017. PMID: 27975290
-
Useful Web Resources.Adv Exp Med Biol. 2016;919:249-253. doi: 10.1007/978-3-319-41448-5_14. Adv Exp Med Biol. 2016. PMID: 27975223 Review.
-
Bioinformatics Tools for Proteomics Data Interpretation.Adv Exp Med Biol. 2016;919:281-341. doi: 10.1007/978-3-319-41448-5_16. Adv Exp Med Biol. 2016. PMID: 27975225 Review.
Cited by
-
Peptidyl arginine deiminase inhibition alleviates angiotensin II-induced fibrosis.Am J Transl Res. 2023 Jul 15;15(7):4558-4572. eCollection 2023. Am J Transl Res. 2023. PMID: 37560217 Free PMC article.
-
Proteomic analysis of the cardiac extracellular matrix: clinical research applications.Expert Rev Proteomics. 2018 Feb;15(2):105-112. doi: 10.1080/14789450.2018.1421947. Epub 2018 Jan 9. Expert Rev Proteomics. 2018. PMID: 29285949 Free PMC article. Review.
-
Development of a Gill Assay Library for Ecological Proteomics of Threespine Sticklebacks (Gasterosteus aculeatus).Mol Cell Proteomics. 2018 Nov;17(11):2146-2163. doi: 10.1074/mcp.RA118.000973. Epub 2018 Aug 9. Mol Cell Proteomics. 2018. PMID: 30093419 Free PMC article.
-
Advances in neuroproteomics for neurotrauma: unraveling insights for personalized medicine and future prospects.Front Neurol. 2023 Nov 22;14:1288740. doi: 10.3389/fneur.2023.1288740. eCollection 2023. Front Neurol. 2023. PMID: 38073638 Free PMC article. Review.
References
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources