Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Feb 3;16(2):1077-1086.
doi: 10.1021/acs.jproteome.6b00576. Epub 2016 Dec 5.

Deep Phosphotyrosine Proteomics by Optimization of Phosphotyrosine Enrichment and MS/MS Parameters

Affiliations

Deep Phosphotyrosine Proteomics by Optimization of Phosphotyrosine Enrichment and MS/MS Parameters

Yuichi Abe et al. J Proteome Res. .

Abstract

Phosphorylation is a major post-translational modification that regulates protein function, with phosphotyrosine (pY) modifications being implicated in oncogenesis. However, global profiling of pY statuses without treatment with a tyrosine phosphatase inhibitor such as pervanadate is still challenging due to the low occupancy of pY sites. In this study, we greatly improved the identification of pY sites by liquid chromatography-tandem mass spectrometry (LC-MS/MS) by optimization of both the pY-immunoprecipitation (pY-IP) protocol and the LC-MS/MS parameters. Our highly sensitive method reproducibly identified more than 1000 pY sites from 8 mg of protein lysate without the need for tyrosine phosphatase inhibitor treatment. Furthermore, >30% of the identified pY sites were not assigned in the PhosphositePlus database. We further applied our method to the comparison of pY status between PC3 cells with and without treatment using the epidermal growth factor receptor (EGFR) inhibitor Erlotinib. Under Erlotinib treatment, we observed not only a decrease in well-known modes of EGFR downstream signaling but also modulations of kinases that are not relevant to the EGFR cascade, such as PTK6 and MAPK13. Our newly developed method for pY proteomics has the potential to reveal unknown pY signaling modes and to identify novel kinase anticancer targets.

Keywords: cancer; immunoprecipitation; kinome; phosphorylation signaling; phosphotyrosine.

PubMed Disclaimer

MeSH terms

LinkOut - more resources