Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Mar 1;49(3):238-245.
doi: 10.1093/abbs/gmw138.

Missing in metastasis B, regulated by DNMT1, functions as a putative cancer suppressor in human lung giant-cell carcinoma

Affiliations
Free article

Missing in metastasis B, regulated by DNMT1, functions as a putative cancer suppressor in human lung giant-cell carcinoma

Hong Wang et al. Acta Biochim Biophys Sin (Shanghai). .
Free article

Abstract

Missing in metastasis B (MIM-B) has been widely reported to inhibit cancer cell invasion and proliferation in a variety of human cancers. However, the functions of MIM-B in lung cancers are still controversial. In addition, the mechanisms and regulation of MIM-B are poorly understood. In the present study, we found that the invasion level of 95C human lung giant-cell carcinoma cells was elevated when MIM-B was knocked down, while the invasion of 95D was suppressed when MIM-B was overexpressed, proving that MIM-B suppresses human lung giant-cell carcinoma cell invasion, which is similar to its function in most cancers. Furthermore, we reported that an increase in DNA methylation density in the promoter of MIM-B by DNA methyltransferase 1 (DNMT1) is correlated with the silencing of MIM-B expression and the high metastasis of 95D human lung giant-cell carcinoma cell line. Taken together, MIM-B, which is regulated by DNMT1 through DNA methylation, is a putative cancer suppressor in human lung giant-cell carcinoma.

Keywords: DNMT1; MIM-B; cell invasion; human lung giant-cell carcinoma.

PubMed Disclaimer

MeSH terms