Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Apr 5;38(9):601-611.
doi: 10.1002/jcc.24718. Epub 2017 Feb 3.

An averaged polarizable potential for multiscale modeling in phospholipid membranes

Affiliations

An averaged polarizable potential for multiscale modeling in phospholipid membranes

Sarah Witzke et al. J Comput Chem. .

Abstract

A set of average atom-centered charges and polarizabilities has been developed for three types of phospholipids for use in polarizable embedding calculations. The lipids investigated are 1,2-dimyristoyl-sn-glycero-3-phosphocholine, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, and 1-palmitoyl-2-oleoyl-sn-glycerol-3-phospho-L-serine given their common use both in experimental and computational studies. The charges, and to a lesser extent the polarizabilities, are found to depend strongly on the molecular conformation of the lipids. Furthermore, the importance of explicit polarization is underlined for the description of larger assemblies of lipids, that is, membranes. In conclusion, we find that specially developed polarizable parameters are needed for embedding calculations in membranes, while common non-polarizable point-charge force fields usually perform well enough for structural and dynamical studies. © 2017 Wiley Periodicals, Inc.

Keywords: Prodan; QM/MM; lipid membrane; multiscale modelling; polarizable embedding.

PubMed Disclaimer

Publication types

LinkOut - more resources