Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Apr:85:7-24.
doi: 10.1016/j.yrtph.2017.01.011. Epub 2017 Feb 1.

A review of toxicity studies on graphene-based nanomaterials in laboratory animals

Affiliations
Review

A review of toxicity studies on graphene-based nanomaterials in laboratory animals

Makoto Ema et al. Regul Toxicol Pharmacol. 2017 Apr.

Abstract

We summarized the findings of toxicity studies on graphene-based nanomaterials (GNMs) in laboratory mammals. The inhalation of graphene (GP) and graphene oxide (GO) induced only minimal pulmonary toxicity. Bolus airway exposure to GP and GO caused acute and subacute pulmonary inflammation. Large-sized GO (L-GO) was more toxic than small-sized GO (S-GO). Intratracheally administered GP passed through the air-blood barrier into the blood and intravenous GO distributed mainly in the lungs, liver, and spleen. S-GO and L-GO mainly accumulated in the liver and lungs, respectively. Limited information showed the potential behavioral, reproductive, and developmental toxicity and genotoxicity of GNMs. There are indications that oxidative stress and inflammation may be involved in the toxicity of GNMs. The surface reactivity, size, and dispersion status of GNMs play an important role in the induction of toxicity and biodistribution of GNMs. Although this review paper provides initial information on the potential toxicity of GNMs, data are still very limited, especially when taking into account the many different types of GNMs and their potential modifications. To fill the data gap, further studies should be performed using laboratory mammals exposed using the route and dose anticipated for human exposure scenarios.

Keywords: Biodistribution; Graphene; Graphene oxide; Graphene quantum dots; Graphene-based nanomaterials; Inflammation; In vivo; Reduced graphene oxide; Toxicity.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources