Expression profiling of colorectal cancer cells reveals inhibition of DNA replication licensing by extracellular calcium
- PMID: 28161520
- PMCID: PMC5424886
- DOI: 10.1016/j.bbamcr.2017.01.017
Expression profiling of colorectal cancer cells reveals inhibition of DNA replication licensing by extracellular calcium
Abstract
Colorectal cancer is one of the most common cancers in industrialised societies. Epidemiological studies, animal experiments, and randomized clinical trials have shown that dietary factors can influence all stages of colorectal carcinogenesis, from initiation through promotion to progression. Calcium is one of the factors with a chemoprophylactic effect in colorectal cancer. The aim of this study was to understand the molecular mechanisms of the anti-tumorigenic effects of extracellular calcium ([Ca2+]o) in colon cancer cells. Gene expression microarray analysis of colon cancer cells treated for 1, 4, and 24h with 2mM [Ca2+]o identified significant changes in expression of 1571 probe sets (ANOVA, p<10-5). The main biological processes affected by [Ca2+]o were DNA replication, cell division, and regulation of transcription. All factors involved in DNA replication-licensing were significantly downregulated by [Ca2+]o. Furthermore, we show that the calcium-sensing receptor (CaSR), a G protein-coupled receptor is a mediator involved in this process. To test whether these results were physiologically relevant, we fed mice with a standard diet containing low (0.04%), intermediate (0.1%), or high (0.9%) levels of dietary calcium. The main molecules regulating replication licensing were inhibited also in vivo, in the colon of mice fed high calcium diet. We show that among the mechanisms behind the chemopreventive effect of [Ca2+]o is inhibition of replication licensing, a process often deregulated in neoplastic transformation. Our data suggest that dietary calcium is effective in preventing replicative stress, one of the main drivers of cancer and this process is mediated by the calcium-sensing receptor.
Keywords: Calcium; Calcium-sensing receptor; Colorectal cancer; DNA replication licensing; Minichromosome maintenance complex.
Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Figures
References
-
- Ferlay J., Steliarova-Foucher E., Lortet-Tieulent J., Rosso S., Coebergh J.W., Comber H., Forman D., Bray F. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur. J. Cancer. 2013;49:1374–1403. - PubMed
-
- Ferlay J., Soerjomataram I., Dikshit R., Eser S., Mathers C., Rebelo M., Parkin D.M., Forman D., Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer. 2015;136:E359–E386. - PubMed
-
- Wu K., Willett W.C., Fuchs C.S., Colditz G.A., Giovannucci E.L. Calcium intake and risk of colon cancer in women and men. J. Natl. Cancer Inst. 2002;94:437–446. - PubMed
-
- McCullough M.L., Robertson A.S., Rodriguez C., Jacobs E.J., Chao A., Carolyn J., Calle E.E., Willett W.C., Thun M.J. Calcium, vitamin D, dairy products, and risk of colorectal cancer in the Cancer Prevention Study II Nutrition Cohort (United States) Cancer Causes Control. 2003;14:1–12. - PubMed
-
- Cho E., Smith-Warner S.A., Spiegelman D., Beeson W.L., van den Brandt P.A., Colditz G.A., Folsom A.R., Fraser G.E., Freudenheim J.L., Giovannucci E., Goldbohm R.A., Graham S., Miller A.B., Pietinen P., Potter J.D., Rohan T.E., Terry P., Toniolo P., Virtanen M.J., Willett W.C., Wolk A., Wu K., Yaun S.S., Zeleniuch-Jacquotte A., Hunter D.J. Dairy foods, calcium, and colorectal cancer: a pooled analysis of 10 cohort studies. J. Natl. Cancer Inst. 2004;96:1015–1022. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Miscellaneous
