Haltere morphology and campaniform sensilla arrangement across Diptera
- PMID: 28161605
- DOI: 10.1016/j.asd.2017.01.005
Haltere morphology and campaniform sensilla arrangement across Diptera
Abstract
One of the primary specializations of true flies (order Diptera) is the modification of the hind wings into club-shaped halteres. Halteres are complex mechanosensory structures that provide sensory feedback essential for stable flight control via an array of campaniform sensilla at the haltere base. The morphology of these sensilla has previously been described in a small number of dipteran species, but little is known about how they vary across fly taxa. Using a synoptic set of specimens representing 42 families from all of the major infraorders of Diptera, we used scanning electron microscopy to map the gross and fine structures of halteres, including sensillum shape and arrangement. We found that several features of haltere morphology correspond with dipteran phylogeny: Schizophora generally have smaller halteres with stereotyped and highly organized sensilla compared to nematoceran flies. We also found a previously undocumented high variation of haltere sensillum shape in nematoceran dipterans, as well as the absence of a dorsal sensillum field in multiple families. Overall, variation in haltere sensillar morphology across the dipteran phylogeny provides insight into the evolution of a highly specialized proprioceptive organ and a basis for future studies on haltere sensory function.
Keywords: Campaniform sensilla; Diptera; Halteres; Hicks papillae; Mechanoreceptors; Sensilla.
Copyright © 2017 Elsevier Ltd. All rights reserved.
Similar articles
-
Neural evidence supports a dual sensory-motor role for insect wings.Proc Biol Sci. 2017 Sep 13;284(1862):20170969. doi: 10.1098/rspb.2017.0969. Proc Biol Sci. 2017. PMID: 28904136 Free PMC article.
-
Flies tune the activity of their multifunctional gyroscope.Curr Biol. 2024 Aug 19;34(16):3644-3653.e3. doi: 10.1016/j.cub.2024.06.066. Epub 2024 Jul 24. Curr Biol. 2024. PMID: 39053466 Free PMC article.
-
Position-specific central projections of mechanosensory neurons on the haltere of the blow fly, Calliphora vicina.J Comp Neurol. 1996 Jun 3;369(3):405-18. doi: 10.1002/(SICI)1096-9861(19960603)369:3<405::AID-CNE6>3.0.CO;2-9. J Comp Neurol. 1996. PMID: 8743421
-
Spatial distribution of campaniform sensilla mechanosensors on wings: form, function, and phylogeny.Curr Opin Insect Sci. 2021 Dec;48:8-17. doi: 10.1016/j.cois.2021.06.002. Epub 2021 Jun 24. Curr Opin Insect Sci. 2021. PMID: 34175464 Review.
-
The evolution of insect wings and their sensory apparatus.Brain Behav Evol. 1997 Jul;50(1):13-24. doi: 10.1159/000113318. Brain Behav Evol. 1997. PMID: 9209763 Review.
Cited by
-
Timing precision in fly flight control: integrating mechanosensory input with muscle physiology.Proc Biol Sci. 2020 Dec 23;287(1941):20201774. doi: 10.1098/rspb.2020.1774. Epub 2020 Dec 16. Proc Biol Sci. 2020. PMID: 33323088 Free PMC article.
-
Wing Design in Flies: Properties and Aerodynamic Function.Insects. 2020 Jul 23;11(8):466. doi: 10.3390/insects11080466. Insects. 2020. PMID: 32718051 Free PMC article. Review.
-
Biomechanics in Soft Mechanical Sensing: From Natural Case Studies to the Artificial World.Biomimetics (Basel). 2018 Oct 24;3(4):32. doi: 10.3390/biomimetics3040032. Biomimetics (Basel). 2018. PMID: 31105254 Free PMC article. Review.
-
Neural evidence supports a dual sensory-motor role for insect wings.Proc Biol Sci. 2017 Sep 13;284(1862):20170969. doi: 10.1098/rspb.2017.0969. Proc Biol Sci. 2017. PMID: 28904136 Free PMC article.
-
Coriolis and centrifugal forces drive haltere deformations and influence spike timing.J R Soc Interface. 2019 Apr 26;16(153):20190035. doi: 10.1098/rsif.2019.0035. J R Soc Interface. 2019. PMID: 31014202 Free PMC article.
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources