Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Jun 22;23(35):8333-8347.
doi: 10.1002/chem.201605246. Epub 2017 Mar 15.

Design of Organic Macrocycle-Modified Iron Oxide Nanoparticles for Drug Delivery

Affiliations
Review

Design of Organic Macrocycle-Modified Iron Oxide Nanoparticles for Drug Delivery

Tina Skorjanc et al. Chemistry. .

Abstract

Paul Ehrlich's vision of a "magic bullet" cure for disease inspires the modern design of nanocarriers whose purpose is to deliver drug cargo to specific sites in the body while circumventing endogenous immunological clearance mechanisms. Iron oxide nanoparticles (IONPs) have emerged as particularly promising nanocarriers because of their biodegradability, ability to be guided magnetically to sites of pathology, mediation of hyperthermic therapy, and imaging capabilities. In this review, we focus on the design and drug-delivery aspects of IONPs coated with organic macrocycles (crown ethers, cyclodextrins, calix[n]arenes, cucurbit[n]urils, or pillar[n]arenes), which, by means of reversible complexation, allow for the convenient loading and release of drug molecules. Macrocycles can be attached to IONPs indirectly or directly. Indirect attachment requires the use of small organic linking molecules or conjugation to shell materials. Direct attachment requires neither. We discuss in detail drug release from the macrocycles, highlighting mechanisms that depend on external stimuli such as changes in pH, the competitive binding of ions or small molecules, or the application of ultrasound or electromagnetic radiation.

Keywords: binding modes; drug delivery; drug release; iron oxide nanoparticles; organic macrocycles; supramolecular interactions.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources