Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Mar 18;484(4):871-877.
doi: 10.1016/j.bbrc.2017.02.007. Epub 2017 Feb 4.

NLRP3 inflammasome activation in mesenchymal stem cells inhibits osteogenic differentiation and enhances adipogenic differentiation

Affiliations

NLRP3 inflammasome activation in mesenchymal stem cells inhibits osteogenic differentiation and enhances adipogenic differentiation

Linghao Wang et al. Biochem Biophys Res Commun. .

Abstract

Osteoporosis is one of the most common skeletal disease featured by osteopenia and adipose accumulation in bone tissue. NLRP3 inflammasome activation is an essential player in aging-related chronic diseases like osteoporosis, particularly due to the causal caspase-1 activation and its correlation to adipose accumulation in bone tissue. Moreover, the expression of anti-aging/senescence SIRT1 was reported to decline along with aging. As the major cellular contributor of bone formation, mesenchymal stem cells (MSCs) are multipotent stem cells processing mutually exclusive differentiatability toward osteocytes or adipocytes. Therefore, we hypothesized that NLRP3 inflammasome activation promotes adipogenesis and repress osteogenesis in MSCs via inhibiting SIRT1 expression. We activated NLRP3 inflammasome in human MSCs via lipopolysaccharide and palmitic acid (LPS/PA) treatment for self-renewal maintenance, adipogenic differentiation or osteogenic differentiation. LPS/PA treatment significantly increased NLRP3 expression, decreased SIRT1 expression and promoted caspase-1 activity in MSCs. LPS/PA treatment also boosted adipogenesis of MSCs and suppressed osteogenesis. Moreover, inhibition of caspase-1 activity repressed adipogenic differentiation and partially improved osteogenic differentiation of MSCs with LPS/PA treatment. Our study demonstrated the pivotal roles of NLRP3 inflammasome and downstream mediator caspase-1 for the progress of osteo-differentiation MSCs, and offered novel therapeutic target of treatment for osteoporosis.

Keywords: Adipogenesis; Mesenchymal stem cell; NLRP3 inflammasome; Osteogenesis; Osteoporosis.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources