Functional impairment in patients with myotonic dystrophy type 1 can be assessed by an ataxia rating scale (SARA)
- PMID: 28168524
- PMCID: PMC5374179
- DOI: 10.1007/s00415-017-8399-x
Functional impairment in patients with myotonic dystrophy type 1 can be assessed by an ataxia rating scale (SARA)
Abstract
Myotonic dystrophy type 1 (DM1) is not characterised by ataxia per se; however, DM1 and ataxia patients show similar disturbances in movement coordination often experiencing walking and balance difficulties, although caused by different underlying pathologies. This study aims to investigate the use of a scale previously described for the assessment and rating of ataxia (SARA) with the hypothesis that it could have utility in DM1 patients as a measure of disease severity and risk of falling. Data from 54 DM1 patients were pulled from the PHENO-DM1 natural history study for analysis. Mean SARA score in the DM1 population was 5.45 relative to the maximum score of eight. A flooring effect (score 0) was observed in mild cases within the sample. Inter-rater and test-retest reliability was high with intraclass coefficients (ICC) of 0.983 and 1.00, respectively. Internal consistency was acceptable as indicated by a Cronbach's alpha of 0.761. Component analysis revealed two principle components. SARA correlated with: (1) all measures of muscle function tested, including quantitative muscle testing of ankle dorsiflexion (r = -0.584*), the 6 min walk test (r = -0.739*), 10 m walk test (r = 0.741*), and the nine hole peg test (r = 0.602*) and (2) measures of disease severity/burden, such as MIRS (r = 0.718*), MDHI (r = 0.483*), and DM1-Activ (r = -0.749*) (*p < 0.001). The SARA score was predicted by an interaction between modal CTG repeat length and age at sampling (r = 0.678, p = 0.003). A score of eight or above predicted the use of a walking aid with a sensitivity of 100% and a specificity of 85.7%. We suggest that further research is warranted to ascertain whether SARA or components of SARA are useful outcome measures for clinical trials in DM1. As a tool, it can be used for gathering information about disease severity/burden and helping to identify patients in need of a walking aid, and can potentially be applied in both research and healthcare settings.
Keywords: Balance; DM1; Falls; Myotonic dystrophy.
Conflict of interest statement
Conflicts of interest
Giovanni Di Paolo: This project was part of Mr. Di Paolo MRes’ research project. Cecilia Jimenez Moreno: Mrs Jimenez Moreno PhD studentship is a combined funding from Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico (ID 611819) and a university scholarship from the MRC centre for neuromuscular diseases and the Barbour Foundation, UK. Nikoletta Nikolenko: Dr. Nikolenko’s contract is part of the PHENO-DM1 study grant. Antonio Atalaia: No conflict of interests. Darren G. Monckton: Prof. Monckton has been supported by awards from the Muscular Dystrophy UK, the Myotonic Dystrophy Support Group, and the European Union. Professor Monckton has also been a paid scientific consultant of Biogen Idec and AMO Pharma. Michela Guglieri: No conflict of interests. Hanns Lochmüller: Prof. Lochmüller has been awarded with the National Institute of Health Research IHR and Wyck grant to perform the PHENO-DM1 study.
Ethical standards
The author declares that the research documented in the submitted manuscript has been carried out in accordance with high research and ethical standards.
Figures
References
-
- Chen H. Atlas of genetic diagnosis and counselling. Totowa: Humana Press; 2006. p. 1077.
-
- Bird TD (2015) Myotonic dystrophy type 1. In: Pagon RA, Adam MP, Ardinger HH, et al (eds) GeneReviews® [Internet]. Seattle (WA), University of Washington, Seattle, 1993–2017. https://www.ncbi.nlm.nih.gov/books/NBK1165/ - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Molecular Biology Databases
Research Materials