Instrumental Variable Analyses and Selection Bias
- PMID: 28169934
- PMCID: PMC5378646
- DOI: 10.1097/EDE.0000000000000639
Instrumental Variable Analyses and Selection Bias
Abstract
Instrumental variables (IV) are used to draw causal conclusions about the effect of exposure E on outcome Y in the presence of unmeasured confounders. IV assumptions have been well described: (1) IV affects E; (2) IV affects Y only through E; (3) IV shares no common cause with Y. Even when these assumptions are met, biased effect estimates can result if selection bias allows a noncausal path from E to Y. We demonstrate the presence of bias in IV analyses on a sample from a simulated dataset, where selection into the sample was a collider on a noncausal path from E to Y. By applying inverse probability of selection weights, we were able to eliminate the selection bias. IV approaches may protect against unmeasured confounding but are not immune from selection bias. Inverse probability of selection weights used with IV approaches can minimize bias.
Conflict of interest statement
Conflicts of interest: none
Figures
Similar articles
-
On a preference-based instrumental variable approach in reducing unmeasured confounding-by-indication.Stat Med. 2015 Mar 30;34(7):1150-68. doi: 10.1002/sim.6404. Epub 2014 Dec 29. Stat Med. 2015. PMID: 25546152
-
Instrumental variables and inverse probability weighting for causal inference from longitudinal observational studies.Stat Methods Med Res. 2004 Feb;13(1):17-48. doi: 10.1191/0962280204sm351ra. Stat Methods Med Res. 2004. PMID: 14746439
-
Selection Bias When Estimating Average Treatment Effects Using One-sample Instrumental Variable Analysis.Epidemiology. 2019 May;30(3):350-357. doi: 10.1097/EDE.0000000000000972. Epidemiology. 2019. PMID: 30896457 Free PMC article.
-
A tutorial on the use of instrumental variables in pharmacoepidemiology.Pharmacoepidemiol Drug Saf. 2017 Apr;26(4):357-367. doi: 10.1002/pds.4158. Epub 2017 Feb 27. Pharmacoepidemiol Drug Saf. 2017. PMID: 28239929 Review.
-
What random assignment does and does not do.J Clin Psychol. 2003 Jul;59(7):751-66. doi: 10.1002/jclp.10170. J Clin Psychol. 2003. PMID: 12808582 Review.
Cited by
-
Use of Multivariable Mendelian Randomization to Address Biases Due to Competing Risk Before Recruitment.Front Genet. 2021 Jan 15;11:610852. doi: 10.3389/fgene.2020.610852. eCollection 2020. Front Genet. 2021. PMID: 33519914 Free PMC article.
-
The Causal Effects of Education on Health Outcomes in the UK Biobank.Nat Hum Behav. 2018 Feb;2(2):117-125. doi: 10.1038/s41562-017-0279-y. Epub 2018 Jan 29. Nat Hum Behav. 2018. PMID: 30406209 Free PMC article. No abstract available.
-
Association Between Metabolically Different Adiposity Subtypes and Osteoarthritis: A Mendelian Randomization Study.Arthritis Care Res (Hoboken). 2023 Apr;75(4):885-892. doi: 10.1002/acr.24884. Epub 2022 Nov 17. Arthritis Care Res (Hoboken). 2023. PMID: 35313082 Free PMC article.
-
A data-adaptive method for investigating effect heterogeneity with high-dimensional covariates in Mendelian randomization.BMC Med Res Methodol. 2024 Feb 10;24(1):34. doi: 10.1186/s12874-024-02153-1. BMC Med Res Methodol. 2024. PMID: 38341532 Free PMC article.
-
Strategies to investigate and mitigate collider bias in genetic and Mendelian randomisation studies of disease progression.PLoS Genet. 2023 Feb 23;19(2):e1010596. doi: 10.1371/journal.pgen.1010596. eCollection 2023 Feb. PLoS Genet. 2023. PMID: 36821633 Free PMC article. Review.
References
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous