Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jan 24:11:22.
doi: 10.3389/fnhum.2017.00022. eCollection 2017.

Resting-State Brain Abnormalities in Chronic Subjective Tinnitus: A Meta-Analysis

Affiliations

Resting-State Brain Abnormalities in Chronic Subjective Tinnitus: A Meta-Analysis

Yu-Chen Chen et al. Front Hum Neurosci. .

Abstract

Purpose: The neural mechanisms that give rise to the phantom sound of tinnitus have not been fully elucidated. Neuroimaging studies have revealed abnormalities in resting-state activity that could represent the neural signature of tinnitus, but there is considerable heterogeneity in the data. To address this issue, we conducted a meta-analysis of published neuroimaging studies aimed at identifying a common core of resting-state brain abnormalities in tinnitus patients. Methods: A systematic search was conducted for whole-brain resting-state neuroimaging studies with SPECT, PET and functional MRI that compared chronic tinnitus patients with healthy controls. The authors searched PubMed, Science Direct, Web of Knowledge and Embase databases for neuroimaging studies on tinnitus published up to September 2016. From each study, coordinates were extracted from clusters with significant differences between tinnitus subjects and controls. Meta-analysis was performed using the activation likelihood estimation (ALE) method. Results: Data were included from nine resting-state neuroimaging studies that reported a total of 51 distinct foci. The meta-analysis identified consistent regions of increased resting-state brain activity in tinnitus patients relative to controls that included, bilaterally, the insula, middle temporal gyrus (MTG), inferior frontal gyrus (IFG), parahippocampal gyrus, cerebellum posterior lobe and right superior frontal gyrus. Moreover, decreased brain activity was only observed in the left cuneus and right thalamus. Conclusions: The current meta-analysis is, to our knowledge, the first to demonstrate a characteristic pattern of resting-state brain abnormalities that may serve as neuroimaging markers and contribute to the understanding of neuropathophysiological mechanisms for chronic tinnitus.

Keywords: brain networks; meta-analysis; neuroimaging; resting-state fMRI; tinnitus.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Flow diagram of the literature search. Flow diagram shows the results of the systematic search for the selected studies in this meta-analysis.
Figure 2
Figure 2
Resting-state brain activity alterations in chronic tinnitus patients compared with healthy controls. Results are from the activation likelihood estimation (ALE) software for meta-analyses. All activations are significant at p < 0.05 corrected for multiple comparisons using the false-discovery rate (FDR) correction.

References

    1. Aron A. R., Robbins T. W., Poldrack R. A. (2014). Inhibition and the right inferior frontal cortex: one decade on. Trends Cogn. Sci. 18, 177–185. 10.1016/j.tics.2013.12.003 - DOI - PubMed
    1. Bauer C. A., Kurt W., Sybert L. T., Brozoski T. J. (2013). The cerebellum as a novel tinnitus generator. Hear. Res. 295, 130–139. 10.1016/j.heares.2012.03.009 - DOI - PMC - PubMed
    1. Benson R. R., Gattu R., Cacace A. T. (2014). Left hemisphere fractional anisotropy increase in noise-induced tinnitus: a diffusion tensor imaging (DTI) study of white matter tracts in the brain. Hear. Res. 309, 8–16. 10.1016/j.heares.2013.10.005 - DOI - PubMed
    1. Boyen K., Langers D. R., de Kleine E., van Dijk P. (2013). Gray matter in the brain: differences associated with tinnitus and hearing loss. Hear. Res. 295, 67–78. 10.1016/j.heares.2012.02.010 - DOI - PubMed
    1. Britz J., Van De Ville D., Michel C. M. (2010). BOLD correlates of EEG topography reveal rapid resting-state network dynamics. Neuroimage 52, 1162–1170. 10.1016/j.neuroimage.2010.02.052 - DOI - PubMed

LinkOut - more resources