Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Observational Study
. 2017 May;72(5):618-623.
doi: 10.1111/anae.13784. Epub 2017 Feb 8.

Effects of acute controlled changes in end-tidal carbon dioxide on the diameter of the optic nerve sheath: a transorbital ultrasonographic study in healthy volunteers

Affiliations
Free article
Observational Study

Effects of acute controlled changes in end-tidal carbon dioxide on the diameter of the optic nerve sheath: a transorbital ultrasonographic study in healthy volunteers

M Dinsmore et al. Anaesthesia. 2017 May.
Free article

Abstract

Transorbital ultrasonographic measurement of the diameter of the optic nerve sheath is a non-invasive, bed-side examination for detecting raised intracranial pressure. However, the ability of the optic nerve sheath diameter to predict acute changes in intracranial pressures remains unknown. The aim of this study was to examine the dynamic changes of the optic nerve sheath diameter in response to mild fluctuations in cerebral blood volume induced by changes in end-tidal carbon dioxide. We studied 11 healthy volunteers. End-tidal carbon dioxide was controlled by a model-based prospective end-tidal targeting system (RespirAct™). The volunteers' end-tidal carbon dioxide was targeted and maintained for 10 min each at normocapnia (baseline); hypercapnia (6.5 kPa); normocapnia (baseline 1); hypocapnia (3.9 kPa) and on return to normocapnia (baseline 2). A single investigator repeatedly measured the optic nerve sheath diameter for 10 min at each level of carbon dioxide. With hypercapnia, there was a significant increase in optic nerve sheath diameter, with a mean (SD) increase from baseline 4.2 (0.7) mm to 4.8 (0.8) mm; p < 0.001. On return to normocapnia, the optic nerve sheath diameter rapidly reverted back to baseline values. This study confirms dynamic changes in the optic nerve sheath diameter with corresponding changes in carbon dioxide, and their reversibly with normocapnia.

Keywords: cerebral vascular resistance: vasodilation; hypercapnia; intracranial pressure; ultrasonography: echogenicity.

PubMed Disclaimer

Publication types

LinkOut - more resources