Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016;19(1):1.
doi: 10.1007/lrr-2016-1. Epub 2016 Feb 8.

Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo

B P Abbott  1 LIGO Scientific CollaborationVirgo CollaborationR Abbott  1 T D Abbott  2 M R Abernathy  1 F Acernese  3 K Ackley  4 C Adams  5 T Adams  6 P Addesso  7 R X Adhikari  1 V B Adya  8 C Affeldt  8 M Agathos  9 K Agatsuma  9 N Aggarwal  10 O D Aguiar  11 A Ain  12 P Ajith  13 B Allen  14 A Allocca  15 P A Altin  16 D V Amariutei  4 S B Anderson  1 W G Anderson  17 K Arai  1 M C Araya  1 C C Arceneaux  18 J S Areeda  19 N Arnaud  20 K G Arun  21 G Ashton  22 M Ast  23 S M Aston  5 P Astone  24 P Aufmuth  25 C Aulbert  8 S Babak  26 P T Baker  27 F Baldaccini  28 G Ballardin  29 S W Ballmer  30 J C Barayoga  1 S E Barclay  31 B C Barish  1 D Barker  32 F Barone  3 B Barr  31 L Barsotti  10 M Barsuglia  33 D Barta  34 J Bartlett  32 I Bartos  35 R Bassiri  36 A Basti  15 J C Batch  32 C Baune  8 V Bavigadda  29 M Bazzan  37 B Behnke  26 M Bejger  38 C Belczynski  39 A S Bell  31 C J Bell  31 B K Berger  1 J Bergman  32 G Bergmann  8 C P L Berry  40 D Bersanetti  41 A Bertolini  9 J Betzwieser  5 S Bhagwat  30 R Bhandare  42 I A Bilenko  43 G Billingsley  1 J Birch  5 R Birney  44 S Biscans  10 A Bisht  45 M Bitossi  29 C Biwer  30 M A Bizouard  20 J K Blackburn  1 C D Blair  46 D Blair  46 R M Blair  32 S Bloemen  47 O Bock  8 T P Bodiya  10 M Boer  48 G Bogaert  48 C Bogan  8 A Bohe  26 P Bojtos  49 C Bond  40 F Bondu  50 R Bonnand  6 R Bork  1 V Boschi  51 S Bose  52 A Bozzi  29 C Bradaschia  53 P R Brady  17 V B Braginsky  43 M Branchesi  54 J E Brau  55 T Briant  56 A Brillet  48 M Brinkmann  8 V Brisson  20 P Brockill  17 A F Brooks  1 D A Brown  30 D D Brown  40 N M Brown  10 C C Buchanan  2 A Buikema  10 T Bulik  39 H J Bulten  57 A Buonanno  58 D Buskulic  6 C Buy  33 R L Byer  36 L Cadonati  59 G Cagnoli  60 C Cahillane  1 J Calderón Bustillo  61 T Callister  1 E Calloni  62 J B Camp  63 K C Cannon  64 J Cao  65 C D Capano  8 E Capocasa  33 F Carbognani  29 S Caride  66 J Casanueva Diaz  20 C Casentini  67 S Caudill  17 M Cavaglià  18 F Cavalier  20 R Cavalieri  29 G Cella  53 C Cepeda  1 L Cerboni Baiardi  54 G Cerretani  15 E Cesarini  67 R Chakraborty  1 T Chalermsongsak  1 S J Chamberlin  17 M Chan  31 S Chao  68 P Charlton  69 E Chassande-Mottin  33 H Y Chen  70 Y Chen  71 C Cheng  68 A Chincarini  72 A Chiummo  29 H S Cho  73 M Cho  74 J H Chow  16 N Christensen  75 Q Chu  46 S Chua  56 S Chung  46 G Ciani  4 F Clara  32 J A Clark  59 F Cleva  48 E Coccia  76 P-F Cohadon  56 A Colla  77 C G Collette  78 M Constancio Jr  11 A Conte  77 L Conti  79 D Cook  32 T R Corbitt  2 N Cornish  27 A Corsi  80 S Cortese  29 C A Costa  11 M W Coughlin  75 S B Coughlin  81 J-P Coulon  48 S T Countryman  35 P Couvares  1 D M Coward  46 M J Cowart  5 D C Coyne  1 R Coyne  80 K Craig  31 J D E Creighton  17 J Cripe  2 S G Crowder  82 A Cumming  31 L Cunningham  31 E Cuoco  29 T Dal Canton  8 S L Danilishin  31 S D'Antonio  83 K Danzmann  84 N S Darman  85 V Dattilo  29 I Dave  42 H P Daveloza  86 M Davier  20 G S Davies  31 E J Daw  87 R Day  29 D DeBra  36 G Debreczeni  34 J Degallaix  60 M De Laurentis  62 S Deléglise  56 W Del Pozzo  40 T Denker  45 T Dent  8 H Dereli  48 V Dergachev  1 R DeRosa  5 R De Rosa  62 R DeSalvo  7 S Dhurandhar  12 M C Díaz  86 L Di Fiore  88 M Di Giovanni  77 A Di Lieto  15 I Di Palma  89 A Di Virgilio  53 G Dojcinoski  90 V Dolique  60 F Donovan  10 K L Dooley  18 S Doravari  5 R Douglas  31 T P Downes  17 M Drago  91 R W P Drever  1 J C Driggers  32 Z Du  65 M Ducrot  6 S E Dwyer  32 T B Edo  87 M C Edwards  75 A Effler  5 H-B Eggenstein  8 P Ehrens  1 J M Eichholz  4 S S Eikenberry  4 W Engels  71 R C Essick  10 T Etzel  1 M Evans  10 T M Evans  5 R Everett  92 M Factourovich  35 V Fafone  93 H Fair  30 S Fairhurst  81 X Fan  65 Q Fang  46 S Farinon  72 B Farr  70 W M Farr  40 M Favata  90 M Fays  81 H Fehrmann  8 M M Fejer  36 I Ferrante  15 E C Ferreira  11 F Ferrini  29 F Fidecaro  15 I Fiori  29 R P Fisher  30 R Flaminio  60 M Fletcher  31 J-D Fournier  48 S Franco  20 S Frasca  77 F Frasconi  53 Z Frei  49 A Freise  40 R Frey  55 T T Fricke  8 P Fritschel  10 V V Frolov  5 P Fulda  4 M Fyffe  5 H A G Gabbard  18 J R Gair  94 L Gammaitoni  28 S G Gaonkar  12 F Garufi  62 A Gatto  33 G Gaur  95 N Gehrels  63 G Gemme  72 B Gendre  48 E Genin  29 A Gennai  53 J George  42 L Gergely  96 V Germain  6 A Ghosh  13 S Ghosh  47 J A Giaime  97 K D Giardina  5 A Giazotto  53 K Gill  98 A Glaefke  31 E Goetz  66 R Goetz  4 L Gondan  49 G González  2 J M Gonzalez Castro  15 A Gopakumar  99 N A Gordon  31 M L Gorodetsky  43 S E Gossan  1 M Gosselin  29 R Gouaty  6 C Graef  31 P B Graff  100 M Granata  60 A Grant  31 S Gras  10 C Gray  32 G Greco  54 A C Green  40 P Groot  101 H Grote  8 S Grunewald  26 G M Guidi  54 X Guo  65 A Gupta  12 M K Gupta  102 K E Gushwa  1 E K Gustafson  1 R Gustafson  66 J J Hacker  19 B R Hall  103 E D Hall  1 G Hammond  31 M Haney  99 M M Hanke  8 J Hanks  32 C Hanna  92 M D Hannam  81 J Hanson  5 T Hardwick  2 J Harms  54 G M Harry  104 I W Harry  26 M J Hart  31 M T Hartman  4 C-J Haster  40 K Haughian  31 A Heidmann  56 M C Heintze  105 H Heitmann  48 P Hello  20 G Hemming  29 M Hendry  31 I S Heng  31 J Hennig  31 A W Heptonstall  1 M Heurs  45 S Hild  31 D Hoak  106 K A Hodge  1 D Hofman  60 S E Hollitt  107 K Holt  5 D E Holz  70 P Hopkins  81 D J Hosken  107 J Hough  31 E A Houston  31 E J Howell  46 Y M Hu  31 S Huang  68 E A Huerta  108 D Huet  20 B Hughey  98 S Husa  109 S H Huttner  31 T Huynh-Dinh  5 A Idrisy  92 N Indik  8 D R Ingram  32 R Inta  80 H N Isa  31 J-M Isac  56 M Isi  1 G Islas  19 T Isogai  10 B R Iyer  13 K Izumi  32 T Jacqmin  56 H Jang  73 K Jani  59 P Jaranowski  110 S Jawahar  111 F Jiménez-Forteza  109 W W Johnson  2 D I Jones  22 R Jones  31 R J G Jonker  9 L Ju  46 K Haris  112 C V Kalaghatgi  21 V Kalogera  113 S Kandhasamy  18 G Kang  73 J B Kanner  1 S Karki  55 M Kasprzack  114 E Katsavounidis  10 W Katzman  5 S Kaufer  25 T Kaur  46 K Kawabe  32 F Kawazoe  8 F Kéfélian  48 M S Kehl  64 D Keitel  8 D B Kelley  30 W Kells  1 R Kennedy  87 J S Key  86 A Khalaidovski  8 F Y Khalili  43 S Khan  81 Z Khan  102 E A Khazanov  115 N Kijbunchoo  32 C Kim  73 J Kim  116 K Kim  117 N Kim  118 Y-M Kim  116 E J King  107 P J King  32 D L Kinzel  5 J S Kissel  32 L Kleybolte  23 S Klimenko  4 S M Koehlenbeck  8 K Kokeyama  2 S Koley  9 V Kondrashov  1 A Kontos  10 M Korobko  23 W Z Korth  1 I Kowalska  39 D B Kozak  1 V Kringel  8 B Krishnan  8 A Królak  119 C Krueger  25 G Kuehn  8 P Kumar  64 L Kuo  68 A Kutynia  120 B D Lackey  30 M Landry  32 J Lange  121 B Lantz  36 P D Lasky  122 A Lazzarini  1 C Lazzaro  123 P Leaci  124 S Leavey  31 E Lebigot  125 C H Lee  116 H K Lee  117 H M Lee  126 K Lee  31 A Lenon  30 M Leonardi  127 J R Leong  8 N Leroy  20 N Letendre  6 Y Levin  122 B M Levine  32 T G F Li  1 A Libson  10 T B Littenberg  113 N A Lockerbie  111 J Logue  31 A L Lombardi  106 J E Lord  30 M Lorenzini  128 V Loriette  129 M Lormand  5 G Losurdo  130 J D Lough  45 H Lück  84 A P Lundgren  8 J Luo  75 R Lynch  10 Y Ma  46 T MacDonald  36 B Machenschalk  8 M MacInnis  10 D M Macleod  2 F Magaña-Sandoval  30 R M Magee  103 M Mageswaran  1 E Majorana  24 I Maksimovic  129 V Malvezzi  67 N Man  48 I Mandel  40 V Mandic  82 V Mangano  131 G L Mansell  16 M Manske  17 M Mantovani  29 F Marchesoni  132 F Marion  6 S Márka  35 Z Márka  35 A S Markosyan  36 E Maros  1 F Martelli  54 L Martellini  48 I W Martin  31 R M Martin  4 D V Martynov  1 J N Marx  1 K Mason  10 A Masserot  6 T J Massinger  30 M Masso-Reid  31 F Matichard  10 L Matone  35 N Mavalvala  10 N Mazumder  103 G Mazzolo  8 R McCarthy  32 D E McClelland  16 S McCormick  5 S C McGuire  133 G McIntyre  1 J McIver  106 D J McManus  16 S T McWilliams  108 D Meacher  48 G D Meadors  89 J Meidam  9 A Melatos  85 G Mendell  32 D Mendoza-Gandara  8 R A Mercer  17 E Merilh  32 M Merzougui  48 S Meshkov  1 C Messenger  31 C Messick  92 P M Meyers  82 F Mezzani  134 H Miao  40 C Michel  60 H Middleton  40 E E Mikhailov  135 L Milano  62 J Miller  10 M Millhouse  27 Y Minenkov  83 J Ming  89 S Mirshekari  136 C Mishra  13 S Mitra  12 V P Mitrofanov  43 G Mitselmakher  4 R Mittleman  10 A Moggi  53 M Mohan  29 S R P Mohapatra  10 M Montani  54 B C Moore  90 C J Moore  94 D Moraru  32 G Moreno  32 S R Morriss  86 K Mossavi  8 B Mours  6 C M Mow-Lowry  40 C L Mueller  4 G Mueller  4 A W Muir  81 Arunava Mukherjee  13 D Mukherjee  17 S Mukherjee  86 A Mullavey  5 J Munch  107 D J Murphy  35 P G Murray  31 A Mytidis  4 I Nardecchia  67 L Naticchioni  77 R K Nayak  137 V Necula  4 K Nedkova  106 G Nelemans  47 M Neri  41 A Neunzert  66 G Newton  31 T T Nguyen  16 A B Nielsen  8 S Nissanke  138 A Nitz  8 F Nocera  29 D Nolting  5 M E N Normandin  86 L K Nuttall  30 J Oberling  32 E Ochsner  17 J O'Dell  139 E Oelker  10 G H Ogin  140 J J Oh  141 S H Oh  141 F Ohme  81 M Oliver  109 P Oppermann  8 R J Oram  5 B O'Reilly  5 R O'Shaughnessy  121 C D Ott  71 D J Ottaway  107 R S Ottens  4 H Overmier  5 B J Owen  80 A Pai  112 S A Pai  42 J R Palamos  55 O Palashov  115 C Palomba  24 A Pal-Singh  23 H Pan  68 C Pankow  142 F Pannarale  81 B C Pant  42 F Paoletti  143 A Paoli  29 M A Papa  144 H R Paris  36 W Parker  5 D Pascucci  31 A Pasqualetti  29 R Passaquieti  15 D Passuello  53 Z Patrick  36 B L Pearlstone  31 M Pedraza  1 R Pedurand  60 L Pekowsky  30 A Pele  5 S Penn  145 R Pereira  35 A Perreca  1 M Phelps  31 O Piccinni  77 M Pichot  48 F Piergiovanni  54 V Pierro  146 G Pillant  29 L Pinard  60 I M Pinto  146 M Pitkin  31 R Poggiani  15 A Post  8 J Powell  31 J Prasad  12 V Predoi  81 S S Premachandra  122 T Prestegard  82 L R Price  1 M Prijatelj  29 M Principe  146 S Privitera  26 G A Prodi  127 L Prokhorov  43 M Punturo  147 P Puppo  24 M Pürrer  81 H Qi  17 J Qin  46 V Quetschke  86 E A Quintero  1 R Quitzow-James  55 F J Raab  32 D S Rabeling  16 H Radkins  32 P Raffai  49 S Raja  42 M Rakhmanov  86 P Rapagnani  77 V Raymond  26 M Razzano  15 V Re  67 J Read  19 C M Reed  32 T Regimbau  48 L Rei  72 S Reid  44 D H Reitze  148 H Rew  135 F Ricci  77 K Riles  66 N A Robertson  149 R Robie  31 F Robinet  20 A Rocchi  83 L Rolland  6 J G Rollins  1 V J Roma  55 J D Romano  86 R Romano  3 G Romanov  135 J H Romie  5 D Rosińska  150 S Rowan  31 A Rüdiger  8 P Ruggi  29 K Ryan  32 S Sachdev  1 T Sadecki  32 L Sadeghian  17 M Saleem  112 F Salemi  8 A Samajdar  137 L Sammut  85 E J Sanchez  1 V Sandberg  32 B Sandeen  113 J R Sanders  66 B Sassolas  60 B S Sathyaprakash  81 P R Saulson  30 O Sauter  66 R L Savage  32 A Sawadsky  25 P Schale  55 R Schilling  8 J Schmidt  8 P Schmidt  151 R Schnabel  23 R M S Schofield  55 A Schönbeck  23 E Schreiber  8 D Schuette  45 B F Schutz  81 J Scott  31 S M Scott  16 D Sellers  5 D Sentenac  29 V Sequino  67 A Sergeev  115 G Serna  19 Y Setyawati  138 A Sevigny  32 D A Shaddock  16 S Shah  47 M S Shahriar  113 M Shaltev  8 Z Shao  1 B Shapiro  36 P Shawhan  74 A Sheperd  17 D H Shoemaker  10 D M Shoemaker  59 K Siellez  48 X Siemens  17 D Sigg  32 A D Silva  11 D Simakov  8 A Singer  1 L P Singer  63 A Singh  89 R Singh  2 A M Sintes  109 B J J Slagmolen  16 J R Smith  19 N D Smith  1 R J E Smith  1 E J Son  141 B Sorazu  31 F Sorrentino  72 T Souradeep  12 A K Srivastava  102 A Staley  35 M Steinke  8 J Steinlechner  31 S Steinlechner  31 D Steinmeyer  45 B C Stephens  17 R Stone  86 K A Strain  31 N Straniero  60 G Stratta  54 N A Strauss  75 S Strigin  43 R Sturani  136 A L Stuver  5 T Z Summerscales  152 L Sun  85 P J Sutton  81 B L Swinkels  29 M J Szczepanczyk  98 M Tacca  33 D Talukder  55 D B Tanner  4 M Tápai  96 S P Tarabrin  8 A Taracchini  26 R Taylor  1 T Theeg  8 M P Thirugnanasambandam  1 E G Thomas  40 M Thomas  5 P Thomas  32 K A Thorne  5 K S Thorne  71 E Thrane  122 S Tiwari  128 V Tiwari  81 K V Tokmakov  111 C Tomlinson  87 M Tonelli  15 C V Torres  86 C I Torrie  1 D Töyrä  40 F Travasso  28 G Traylor  5 D Trifirò  18 M C Tringali  127 L Trozzo  153 M Tse  10 M Turconi  48 D Tuyenbayev  86 D Ugolini  154 C S Unnikrishnan  99 A L Urban  17 S A Usman  30 H Vahlbruch  25 G Vajente  1 G Valdes  86 N van Bakel  9 M van Beuzekom  9 J F J van den Brand  57 C van den Broeck  9 D C Vander-Hyde  155 L van der Schaaf  9 M V van der Sluys  47 J V van Heijningen  9 A A van Veggel  31 M Vardaro  37 S Vass  1 M Vasúth  34 R Vaulin  10 A Vecchio  40 G Vedovato  79 J Veitch  40 P J Veitch  107 K Venkateswara  156 D Verkindt  6 F Vetrano  54 A Viceré  54 S Vinciguerra  40 D J Vine  44 J-Y Vinet  48 S Vitale  10 T Vo  30 H Vocca  28 C Vorvick  32 W D Vousden  40 S P Vyatchanin  43 A R Wade  16 L E Wade  17 M Wade  17 M Walker  2 L Wallace  1 S Walsh  17 G Wang  128 H Wang  40 M Wang  40 X Wang  65 Y Wang  46 R L Ward  16 J Warner  32 M Was  6 B Weaver  32 L-W Wei  48 M Weinert  8 A J Weinstein  1 R Weiss  10 T Welborn  5 L Wen  46 P Weßels  8 T Westphal  8 K Wette  8 J T Whelan  157 D J White  87 B F Whiting  4 R D Williams  1 A R Williamson  81 J L Willis  158 B Willke  84 M H Wimmer  45 W Winkler  8 C C Wipf  1 H Wittel  45 G Woan  31 J Worden  32 J L Wright  31 G Wu  5 J Yablon  113 W Yam  10 H Yamamoto  1 C C Yancey  74 M J Yap  16 H Yu  10 M Yvert  6 A Zadrożny  120 L Zangrando  79 M Zanolin  98 J-P Zendri  79 M Zevin  113 F Zhang  10 L Zhang  1 M Zhang  135 Y Zhang  121 C Zhao  46 M Zhou  113 Z Zhou  113 X J Zhu  46 M E Zucker  10 S E Zuraw  106 J Zweizig  1
Affiliations
Review

Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo

B P Abbott et al. Living Rev Relativ. 2016.

Abstract

We present a possible observing scenario for the Advanced LIGO and Advanced Virgo gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We determine the expected sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron-star systems, which are considered the most promising for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5 deg2 to 20 deg2 will require at least three detectors of sensitivity within a factor of ∼ 2 of each other and with a broad frequency bandwidth. Should the third LIGO detector be relocated to India as expected, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.

Keywords: Data analysis; Electromagnetic counterparts; Gravitational waves; Gravitational-wave detectors.

PubMed Disclaimer

Figures

Figure 1
Figure 1
aLIGO (left) and AdV (right) target strain sensitivity as a function of frequency. The binary neutron-star (BNS) range, the average distance to which these signals could be detected, is given in megaparsec. Current notions of the progression of sensitivity are given for early, mid and late commissioning phases, as well as the final design sensitivity target and the BNS-optimized sensitivity. While both dates and sensitivity curves are subject to change, the overall progression represents our best current estimates.
Figure 2
Figure 2
The planned sensitivity evolution and observing runs of the aLIGO and AdV detectors over the coming years. The colored bars show the observing runs, with the expected sensitivities given by the data in Figure 1. There is significant uncertainty in the start and end times of the observing runs, especially for those further in the future, and these could move forward or backwards by a few months relative to what is shown above. The plan is summarised in Section 2.2.
Figure 3
Figure 3
False alarm rate versus detection statistic for compact binary coalescence (CBC) and burst searches on 2009–2010 LIGO-Virgo data. Left: Cumulative rate of background events for a subset of the CBC search parameter space, as a function of the threshold ranking statistic ρc [19]. Different methods were used to estimate the background for rate for high and low ρc, which is why there is an apparent gap in the data points. The background for the full search was approximately a factor of six higher. Right: Cumulative rate of background events for the burst search, as a function of the coherent network amplitude η [14]. For ease of comparison, we have also plotted the approximate equivalent ρc for the burst search (an exact identification is not possible as the search methods differ). The burst events are divided into two sets based on their central frequency.
Figure 4
Figure 4
Source localization by triangulation for the aLIGO-AdV network. The locations of the three detectors are indicated by black dots, with LIGO Hanford labeled H; LIGO Livingston as L, and Virgo as V. The locus of constant time delay (with associated timing uncertainty) between two detectors forms an annulus on the sky concentric about the baseline between the two sites (labeled by the two detectors). For three detectors, these annuli may intersect in two locations. One is centered on the true source direction (S), while the other (S′) is its mirror image with respect to the geometrical plane passing through the three sites. For four or more detectors there is a unique intersection region of all of the annuli. Figure adapted from [41].
Figure 5
Figure 5
Posterior probability density for sky location for an example binary neutron-star coalescence observed with a two-detector network. Left: Map produced by the low-latency BAYESTAR code [99, 98]. Right: Map produced by the higher-latency (non-spinning) LALInference [110], which also produces posterior estimates for other parameters. These algorithms are discussed in Section 3.2.1. The star indicates the true source location. The event has a network signal-to-noise ratio of ρc = 13.2 using a noise curve appropriate for the first aLIGO run (O1, see Section 4.1). The plot is a Mollweide projection in geographic coordinates. Image reproduced with permission from [31], copyright by APS; further mock sky maps for the first two observing runs can be found at www.ligo.org/scientists/first2years/ for binary neutron-star signals and www.ligo.org/scientists/burst-first2years/ for burst signals.
Figure 6
Figure 6
Anticipated binary neutron-star sky localization during the first two observing runs (top: O1, see Section 4.1; bottom: O2, see Section 4.2). The plots show the cumulative fractions of events with sky-localization areas smaller than the abscissa value. Left: Sky area of 90% credible region formula image, the (smallest) area enclosing 90% of the total posterior probability. Right: Searched area formula image, the area of the smallest credible region containing the true position. Results are shown for the low-latency bayestar [98] and higher-latency (non-spinning) LALInference (LI) [110] codes. The O2 results are divided into those where two detectors (2-det) are operating in coincidence, and those where three detectors (3-det) are operating: assuming a duty cycle of ∼ 80% for each instrument, the two-detector network would be operating for ∼ 40% of the total time and the three-detector network ∼ 50% of the time. The shaded areas indicate the 68% confidence intervals on the cumulative distributions. A detection threshold of a signal-to-noise ratio of 12 is used and results are taken from [31, 99].
Figure 7
Figure 7
Simulated sky localization for Gaussian (G; top left), sine-Gaussian (SG; top right), broadband white-noise (WN; bottom left) and binary black-hole (BBH; bottom right) bursts during the first two observing runs (O1, see Section 4.1, and O2, see Section 4.2). The plots show the cumulative fractions of events with searched areas A* smaller than the abscissa value. Results are shown for the low-latency coherent WaveBurst (cWB) [70, 71, 73] and higher-latency LALInferenceBurst (LIB) [110] codes. The O2 results consider only a three-detector (3-det) network; assuming an instrument duty cycle of ∼ 80%, this would be operational ∼ 50% of the time. The shaded areas indicate the 68% confidence intervals on the cumulative distributions. A detection threshold of a false alarm rate of approximately 1 yr−1 is used and results are taken from [51].
Figure 8
Figure 8
Schematic network sensitivity and localization accuracy for face-on binary neutron-star (BNS) systems with advanced-detector networks. The ellipses show 90% confidence localization areas based upon timing triangulation alone, and the red crosses show regions of the sky where the signal would not be confidently detected. The top two plots show the localization expected for a BNS system at 80 Mpc by the LIGO Hanford (H)-LIGO Livingston (L)-Virgo (V) network (HLV) in the 2016–2017 run (left) and 2017–2018 run (right). The bottom two plots show the localization expected for a BNS system at 160 Mpc by the HLV network in the 2019+ run (left) and by the four-detector network (HILV) comprising three LIGO sites — in Hanford, Livingston and India (I) — and Virgo operating in 2022+ with all detectors at final design sensitivity (right). The inclusion of a fourth site in India provides good localization over the whole sky.

References

    1. Aasi J, LIGO Scientific Collaboration. Virgo Collaboration et al. The characterization of Virgo data and its impact on gravitational-wave searches. Class. Quantum Grav. 2012;29:155002. doi: 10.1088/0264-9381/29/15/155002. - DOI
    1. Aasi J, LIGO Scientific Collaboration. Virgo Collaboration et al. Open call for partnership for the EM identification and follow-up of GW candidate events. Pasadena, CA: LIGO; 2013.
    1. Aasi J, LIGO Scientific Collaboration. Virgo Collaboration et al. Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network. Phys. Rev. D. 2013;88:062001. doi: 10.1103/PhysRevD.88.062001. - DOI
    1. Aasi, J. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “Prospects for Localization of Gravitational Wave Transients by the Advanced LIGO and Advanced Virgo Observatories”, arXiv, e-print, (2013). [ADS], [arXiv:1304.0670v1 [gr-qc]]. (Cited on pages 5 and 25.)
    1. Aasi J, LIGO Scientific Collaboration. Virgo Collaboration et al. First Searches for Optical Counterparts to Gravitational-wave Candidate Events. Astrophys. J. Suppl. Ser. 2014;211:7. doi: 10.1088/0067-0049/211/1/7. - DOI

LinkOut - more resources