Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Mar 1;9(8):7288-7296.
doi: 10.1021/acsami.6b16323. Epub 2017 Feb 16.

Self-Assembly of the Lateral In2Se3/CuInSe2 Heterojunction for Enhanced Photodetection

Affiliations

Self-Assembly of the Lateral In2Se3/CuInSe2 Heterojunction for Enhanced Photodetection

Zhaoqiang Zheng et al. ACS Appl Mater Interfaces. .

Abstract

Layered materials have been found to be promising candidates for next-generation microelectronic and optoelectronic devices due to their unique electrical and optical properties. The p-n junction is an elementary building block for microelectronics and optoelectronics devices. Herein, using the pulsed-laser deposition (PLD) method, we achieve pure In2Se3-based photodetectors and In2Se3/CuInSe2-based photodetectors with a lateral p-n heterojunction. In comparison to that of the pure In2Se3-based photodetector, the photodetectors based on the In2Se3/CuInSe2 heterojunction exhibit a tremendous promotion of photodetection performance and obvious rectifying behavior. The photoresponsivity and external quantum efficiency of the fabricated heterojunction-based device under 532 nm light irradiation are 20.1 A/W and 4698%, respectively. These values are about 7.5 times higher than those of our fabricated pure In2Se3-based devices. We attribute this promotion of photodetection to the suitable band structures of In2Se3 and CuInSe2, which greatly promote the separation of photoexcited electron-hole pairs. This work suggests an effective way to form lateral p-n junctions, opening up a new scenario for designing and constructing high-performance optoelectronic devices.

Keywords: CuInSe2; In2Se3; lateral junction; layered materials; photodetectors.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources