Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Dec 20;88(24):12479-12488.
doi: 10.1021/acs.analchem.6b03951. Epub 2016 Nov 28.

Removal of N-Linked Glycosylations at Acidic pH by PNGase A Facilitates Hydrogen/Deuterium Exchange Mass Spectrometry Analysis of N-Linked Glycoproteins

Affiliations

Removal of N-Linked Glycosylations at Acidic pH by PNGase A Facilitates Hydrogen/Deuterium Exchange Mass Spectrometry Analysis of N-Linked Glycoproteins

Pernille Foged Jensen et al. Anal Chem. .

Abstract

Protein glycosylation is the most frequent post-translational modification and is present on more than 50% of eukaryotic proteins. Glycosylation covers a wide subset of modifications involving many types of complex oligosaccharide structures, making structural analysis of glycoproteins and their glycans challenging for most analytical techniques. Hydrogen/deuterium exchange monitored by mass spectrometry is a sensitive technique for investigation of protein conformational dynamics of complex heterogeneous proteins in solution. N-linked glycoproteins however pose a challenge for HDX-MS. HDX information can typically not be obtained from regions of the glycoprotein that contain the actual N-linked glycan as glycan heterogeneity combined with pepsin digestion yields a large diversity of peptic N-glycosylated peptides that can be difficult to detect. Here, we present a novel HDX-MS workflow for analysis of the conformational dynamics of N-linked glycoproteins that utilizes the enzyme PNGase A for deglycosylation of labeled peptic N-linked glycopeptides at HDX quench conditions, i.e., acidic pH and low temperature. PNGase A-based deglycosylation is thus performed after labeling (post-HDX) and the utility of this approach is demonstrated during analysis of the monoclonal antibody Trastuzumab for which it has been shown that the native conformational dynamics is dependent on the N-linked glycan. In summary, the HDX-MS workflow with integrated PNGase A deglycosylation enables analysis of the native HDX of protein regions containing N-linked glycan sites and should thus significantly improve our ability to study the conformational properties of glycoproteins.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources