Combination Targeted Therapy to Disrupt Aberrant Oncogenic Signaling and Reverse Epigenetic Dysfunction in IDH2- and TET2-Mutant Acute Myeloid Leukemia
- PMID: 28193779
- PMCID: PMC5413413
- DOI: 10.1158/2159-8290.CD-16-1049
Combination Targeted Therapy to Disrupt Aberrant Oncogenic Signaling and Reverse Epigenetic Dysfunction in IDH2- and TET2-Mutant Acute Myeloid Leukemia
Abstract
Genomic studies in acute myeloid leukemias (AML) have identified mutations that drive altered DNA methylation, including TET2 and IDH2 Here, we show that models of AML resulting from TET2 or IDH2 mutations combined with FLT3ITD mutations are sensitive to 5-azacytidine or to the IDH2 inhibitor AG-221, respectively. 5-azacytidine and AG-221 treatment induced an attenuation of aberrant DNA methylation and transcriptional output and resulted in a reduction in leukemic blasts consistent with antileukemic activity. These therapeutic benefits were associated with restoration of leukemic cell differentiation, and the normalization of hematopoiesis was derived from mutant cells. By contrast, combining AG-221 or 5-azacytidine with FLT3 inhibition resulted in a reduction in mutant allele burden, progressive recovery of normal hematopoiesis from non-mutant stem-progenitor cells, and reversal of dysregulated DNA methylation and transcriptional output. Together, our studies suggest combined targeting of signaling and epigenetic pathways can increase therapeutic response in AML.Significance: AMLs with mutations in TET2 or IDH2 are sensitive to epigenetic therapy through inhibition of DNA methyltransferase activity by 5-azacytidine or inhibition of mutant IDH2 through AG-221. These inhibitors induce a differentiation response and can be used to inform mechanism-based combination therapy. Cancer Discov; 7(5); 494-505. ©2017 AACR.See related commentary by Thomas and Majeti, p. 459See related article by Yen et al., p. 478This article is highlighted in the In This Issue feature, p. 443.
©2017 American Association for Cancer Research.
Conflict of interest statement
Figures
 
              
              
              
              
                
                
                 
              
              
              
              
                
                
                 
              
              
              
              
                
                
                 
              
              
              
              
                
                
                 
              
              
              
              
                
                
                 
              
              
              
              
                
                
                Comment in
- 
  
  Optimizing Next-Generation AML Therapy: Activity of Mutant IDH2 Inhibitor AG-221 in Preclinical Models.Cancer Discov. 2017 May;7(5):459-461. doi: 10.1158/2159-8290.CD-17-0270. Cancer Discov. 2017. PMID: 28461409 Free PMC article.
References
- 
    - Shih AH, Abdel-Wahab O, Patel JP, Levine RL. The role of mutations in epigenetic regulators in myeloid malignancies. Nature reviews Cancer. 2012;12:599–612. - PubMed
 
- 
    - Dang L, Yen K, Attar EC. IDH mutations in cancer and progress toward development of targeted therapeutics. Annals of oncology : official journal of the European Society for Medical Oncology. 2016;27:599–608. - PubMed
 
- 
    - Delhommeau F, Dupont S, Della Valle V, James C, Trannoy S, Masse A, et al. Mutation in TET2 in myeloid cancers. N Engl J Med. 2009;360:2289–301. - PubMed
 
MeSH terms
Substances
Grants and funding
LinkOut - more resources
- Full Text Sources
- Other Literature Sources
- Medical
- Molecular Biology Databases
- Miscellaneous
 
        