Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017:963:185-196.
doi: 10.1007/978-3-319-50044-7_11.

Wrestling with Chromosomes: The Roles of SUMO During Meiosis

Affiliations
Review

Wrestling with Chromosomes: The Roles of SUMO During Meiosis

Amanda C Nottke et al. Adv Exp Med Biol. 2017.

Abstract

Meiosis is a specialized form of cell division required for the formation of haploid gametes and therefore is essential for successful sexual reproduction. Various steps are exquisitely coordinated to ensure accurate chromosome segregation during meiosis, thereby promoting the formation of haploid gametes from diploid cells. Recent studies are demonstrating that an important form of regulation during meiosis is exerted by the post-translational protein modification known as sumoylation. Here, we review and discuss the various critical steps of meiosis in which SUMO-mediated regulation has been implicated thus far. These include the maintenance of meiotic centromeric heterochromatin , meiotic DNA double-strand break repair and homologous recombination, centromeric coupling, and the assembly of a proteinaceous scaffold between homologous chromosomes known as the synaptonemal complex.

Keywords: Double-strand break repair; Homology sorting; Meiosis; SUMO; Synaptonemal complex.

PubMed Disclaimer

Figures

Fig. 11.1
Fig. 11.1. A model for the roles of sumoylation in meiotic chromosome dynamics: Centromeric coupling and SC assembly
In budding yeast, Zip1, a structural component of the synaptonemal complex, is required for centromeric coupling early in meiotic prophase I. Once homologous chromosomes are coupled, synapsis ensues. Two distinct waves of sumoylation are believed to participate in these processes. Wave 1 involves centromeric (or pericentromeric) sumoylation and the recognition of SUMO-conjugated products at the centromeres by Zip1 in a Zip3-independent fashion. Thus, centromeric sumoylation may be the result of the activity of an as yet unidentified E3 ligase. Wave 2 involves the Zip3 SUMO E3 ligase and results in the formation of short Zip1 stretches. Initiation of synapsis is not DSB–dependent, however, DSB formation via Spo 11 function is required for the Zip3-dependent Zip1 elongation resulting in a fully-formed SC. Therefore, it appears that sumoylation is important both in the early stages of chromosome pairing/homology sorting and later on in the assembly of the mature SC

References

    1. Agarwal S, Roeder GS. Zip3 provides a link between recombination enzymes and synaptonemal complex proteins. Cell. 2000;102:245–255. - PubMed
    1. Apionishev S, Malhotra D, Raghavachari S, Tanda S, Rasooly RS. The Drosophila UBC9 homologue lesswright mediates the disjunction of homologues in meiosis I. Genes Cells. 2001;6:215–224. - PubMed
    1. Bachant J, Alcasabas A, Blat Y, Kleckner N, Elledge SJ. The SUMO-1 isopeptidase Smt4 is linked to centromeric cohesion through SUMO-1 modification of DNA topoisomerase II. Mol Cell. 2002;9:1169–1182. - PubMed
    1. Bencsath KP, Podgorski MS, Pagala VR, Slaughter CA, Schulman BA. Identification of a multifunctional binding site on Ubc9p required for Smt3p conjugation. J Biol Chem. 2002;277:47938–47945. - PubMed
    1. Bhalla N, Wynne DJ, Jantsch V, Dernburg AF. ZHP-3 acts at crossovers to couple meiotic recombination with synaptonemal complex disassembly and bivalent formation in C. elegans. PLoS Genet. 2008;4:e1000235. - PMC - PubMed

Publication types

Substances

LinkOut - more resources